The Weyl groups and weight multiplicities of the exceptional Lie groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1981 J. Phys. A: Math. Gen. 1451
(http://iopscience.iop.org/0305-4470/14/1/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 16:37

Please note that terms and conditions apply.

The Weyl groups and weight multiplicities of the exceptional Lie groups

R C King and A H A Al-Qubanchi \dagger
Mathematics Department, University of Southampton, Southampton SO9 5NH, UK

Received 19 February 1980

Abstract

The Weyl group, W_{G}, of each exceptional simple Lie group G , is described in detail. Its structure is defined in terms of its coset decomposition with respect to the Weyl group, W_{H}, of a classical semi-simple Lie group, H , embedded naturally in G . The concepts of G-dominance and G-equivalence are defined and used to determine, from the character formula of Weyl, the branching rule associated with the restriction of group elements from G to H . The Weyl group W_{G} is used further to impose constraints on both the branching multiplicities for $G \rightarrow H$ and the weight multiplicities of G. These constraints are used to evaluate the weight multiplicities of F_{4}, E_{6}, E_{7} and E_{8} together with the branching multiplicities for $\mathrm{E}_{8} \rightarrow \mathrm{SO}(16)$.

1. Introduction

As stressed by Wybourne and Bowick (1977) a number of recent applications of the exceptional Lie groups $G_{2}, F_{4}, E_{6}, E_{7}$ and E_{8} to physics have made it necessary to establish results on the irreducible representations of these groups analogous to those appropriate to the classical Lie groups $\mathrm{SU}(k+1), \mathrm{SO}(2 k+1), \mathrm{Sp}(2 k)$ and $\mathrm{SO}(2 k)$. Amongst other requirements for these applications are the evaluation of weight and branching multiplicities. In this paper it is shown that these two types of multiplicity are intimately related and that the Weyl symmetry groups of the exceptional Lie groups have a special role to play in their evaluation.

It is particularly important to make use of the relation between the Weyl symmetry groups of each exceptional Lie group and a naturally embedded classical Lie subgroup. Such natural embeddings have been discussed in detail in the preceding paper (King and Al-Qubanchi 1981), hereafter referred to as I. It has been shown in I that each natural embedding serves to define a natural labelling scheme for the irreducible representations of the exceptional Lie groups. In this paper the labelling schemes based on the embeddings $\mathrm{G}_{2} \supset \mathrm{SU}(3), \mathrm{F}_{4} \supset \mathrm{SO}(9), \mathrm{E}_{6} \supset \mathrm{SU}(2) \otimes \mathrm{SU}(6), \mathrm{E}_{7} \supset \mathrm{SU}(8)$ and $\mathrm{E}_{8} \supset \mathrm{SO}(16)$ are used. The advantages of these particular choices are explained in the following section in which the Weyl group W_{G} of each exceptional Lie group G is completely determined from the results of I and expressed in terms of its coset structure with respect to the Weyl group W_{H} of the appropriate classical Lie subgroup H of G .

In $\S 3$ the concepts of G-dominance and G-equivalence of vectors are defined in a notation appropriate to both the specification of weights of irreducible representations and the labelling of those irreducible representations. These concepts are used in § 4 in conjunction with the character formula due to Weyl (1926) to determine algorithms for

[^0]the determination of the branching multiplicities associated with the restriction $G \rightarrow H$. These algorithms depend for their implementation solely upon the properties of the classical Lie group H. Unfortunately they are rather inefficient. The situation is remedied in $\S 5$ in which it is shown that the G-equivalence of weights of an exceptional Lie group G imposes strong constraints on both the weight multiplicities of G and simultaneously the branching multiplicities for $\mathrm{G} \rightarrow \mathrm{H}$. These constraints are such that both such multiplicities may be calculated in terms of the known weight multiplicities of the classical Lie group H (King and Plunkett 1976). In this way tabulations of the weight multiplicities of F_{4}, E_{6}, E_{7} and E_{8} are built up. The work of Wybourne and Bowick (1977) precludes the necessity of tabulating the branching multiplicities other than those for the restriction $\mathrm{E}_{8} \rightarrow \mathrm{SO}(16)$. These results complete the task initiated earlier for the group G_{2} (King and Al-Qubanchi 1978).

2. The Weyl group

The system of roots, $\boldsymbol{\Sigma}_{g}$, of a complex semi-simple Lie algebra g, of rank k, is a set of vectors r in k-dimensional root space V. This space, as explained in I, may conveniently be embedded in a Euclidean space W of dimension d with $d \geqslant k$. The orthogonal complement, V^{\perp}, of V in W is spanned by certain vectors p belonging to a complementary set Γ_{8}. These vectors satisfy the constraint $r . p=0$ for all root vectors r. The basis vectors of W are the mutually orthonormal vectors \boldsymbol{e}_{i} with $i=1,2, \ldots, d$. They are defined so that the j th component of \boldsymbol{e}_{i} is given by $\left(\boldsymbol{e}_{i}\right)_{j}=\delta_{i j}$. An ordering of vectors in W may be introduced such that v is higher than w, signified by $v>w$, if and only if the first non-vanishing component of $v-\boldsymbol{w}$ with respect to the basis defined by \boldsymbol{e}_{i}, $i=1,2, \ldots, d$, is positive.

A root \boldsymbol{r} is positive if $\boldsymbol{r}>\mathbf{0}$, where all the components of $\mathbf{0}$ are zero. Furthermore, a root is said to be simple if it is positive and may not be written as the sum of two positive roots. Such simple roots were introduced by Dynkin (1962, p 432), who proved that each complex semi-simple Lie algebra g is characterised by its system, Π_{g}, of simple roots.

As pointed out in I , there is a consensus of opinion regarding the specification of the roots, Σ_{g}, and the simple roots, Π_{g}, of each of the simple classical Lie algebras of rank $k: \mathrm{A}_{k}, \mathrm{~B}_{k}, \mathrm{C}_{k}$ and D_{k} associated with the classical groups $\mathrm{SU}(k+1), \mathrm{SO}(2 k+1), \mathrm{Sp}(2 k)$ and $\mathrm{SO}(2 k)$ respectively. No such consensus has emerged in the case of the simple exceptional Lie algebras $\mathrm{G}_{2}, \mathrm{~F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}$ and E_{8} associated with the exceptional groups denoted by the same symbols. This is primarily because the natural way of constructing the root system of an exceptional simple Lie algebra g, of rank k, depends upon an embedding in g of a classical semi-simple Lie subalgebra h of the same rank k. For each g there may exist more than one such h, leading therefore to the great variety of root systems for g appearing in the literature. This has been discussed in detail in I. For reasons which will become clear the labelling schemes adhered to in this paper are those based on the embeddings: $\mathrm{G}_{2} \supset \mathrm{~A}_{2}, \mathrm{~F}_{4} \supset \mathrm{~B}_{4}, \mathrm{E}_{6} \supset \mathrm{~A}_{1}+\mathrm{A}_{5}, \mathrm{E}_{7} \supset \mathrm{~A}_{7}$ and $\mathrm{E}_{8} \supset \mathrm{D}_{8}$. The corresponding root systems, along with those of the classical simple algebras, are displayed in table 1. For each algebra the important quantity

$$
\begin{equation*}
\boldsymbol{R}=\frac{1}{2} \sum_{r>0} \boldsymbol{r} \tag{2.1}
\end{equation*}
$$

is also given, as well as the vectors p which define V^{\perp}.
Table 1.

Lie group G	Lie algebra g	Complementary system $\boldsymbol{p} \in \Gamma_{\mathrm{g}}$	Root system r 江g		$\boldsymbol{R}=\frac{1}{2} \sum_{r>\mathbf{0}} \boldsymbol{r}$
$\mathrm{SU}(k+1)$	A_{k}	$\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\ldots+\boldsymbol{e}_{\text {k }}$	$\pm\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{i}\right)$	$1 \leqslant i<j \leqslant k+1$	$\frac{1}{2}(k, k-2, \ldots,-k+2,-k)$
$\mathrm{SO}(2 k+1)$	B_{k}	-	$\begin{aligned} & \pm \boldsymbol{e}_{i} \\ & \pm \boldsymbol{e}_{i} \pm \boldsymbol{e}_{j} \end{aligned}$	$\begin{aligned} & 1 \leqslant i \leqslant k \\ & 1 \leqslant i<j \leqslant k \end{aligned}$	$\frac{1}{2}(2 k-1,2 k-3, \ldots, 3,1)$
$\mathrm{Sp}(2 k)$	C_{k}	-	$\begin{aligned} & \pm 2 \boldsymbol{e}_{i} \\ & \pm \boldsymbol{e}_{i} \pm \boldsymbol{e}_{i} \end{aligned}$	$\begin{aligned} & 1 \leqslant i \leqslant k \\ & 1 \leqslant i<j \leqslant k \end{aligned}$	$(k, k-1, \ldots, 2,1)$
SO(2k)	D_{k}	-	$\pm \boldsymbol{e}_{i} \pm \boldsymbol{e}_{i}$	$1 \leqslant i<j \leqslant k$	$(k-1, k-2, \ldots, 1,0)$
G_{2}	G_{2}	$\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}$	$\begin{aligned} & \pm\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{i}\right) \\ & \pm \frac{1}{3}\left(2 \boldsymbol{e}_{i}-\boldsymbol{e}_{i}-\boldsymbol{e}_{k}\right) \end{aligned}$	$\begin{aligned} & 1 \leqslant i<j \leqslant 3 \\ & 1 \leqslant i \leqslant 3, \quad 1 \leqslant j<k \leqslant 3, \quad i \neq j, k \end{aligned}$	$\frac{1}{3}(5,-1,-4)$
F_{4}	F_{4}	-	$\begin{aligned} & \pm e_{i} \\ & \pm e_{i} \pm e_{i} \\ & \frac{1}{2}\left(\pm e_{1} \pm e_{2} \pm e_{3} \pm e_{4}\right) \end{aligned}$	$\begin{aligned} & 1 \leqslant i \leqslant 4 \\ & 1 \leqslant i<i \leqslant 4 \end{aligned}$	$\frac{1}{2}(11,5,3,1)$
E_{6}	E_{6}	$\begin{aligned} & \boldsymbol{e}_{1}+\boldsymbol{e}_{8} \\ & \boldsymbol{e}_{2}+\boldsymbol{e}_{3}+\ldots+\boldsymbol{e}_{7} \end{aligned}$	$\begin{aligned} & \pm\left(\boldsymbol{e}_{1}-\boldsymbol{e}_{8}\right) \\ & \pm\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right) \\ & \frac{1}{2} \pm \pm\left(\boldsymbol{e}_{1}-\boldsymbol{e}_{8}\right) \pm \boldsymbol{e}_{2} \pm \boldsymbol{e} \end{aligned}$	$\begin{aligned} & 2 \leqslant i<j \leqslant 7 \\ & \left.3 \pm e_{4} \pm e_{5} \pm e_{6} \pm e_{7}\right] \quad(4+\text { signs, } 4-\text { signs }) \end{aligned}$	$\frac{1}{2}(11,5,3,1,-1,-3,-5,-11)$
E_{7}	E_{7}	$e_{1}+e_{2}+\ldots+e_{8}$	$\begin{aligned} & \pm\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right) \\ & \frac{1}{2}\left(\pm \boldsymbol{e}_{1} \pm \boldsymbol{e}_{2} \pm \boldsymbol{e}_{3} \pm \boldsymbol{e}_{4}\right. \end{aligned}$	$\begin{aligned} & 1 \leqslant i<j \leqslant 8 \\ & \left.=e_{5} \pm e_{6} \pm \boldsymbol{e}_{7} \pm \boldsymbol{e}_{8}\right) \quad(4+\text { signs, } 4-\text { signs }) \end{aligned}$	$\frac{1}{4}(49,5,1,-3,-7,-11,-15,-19)$
E_{8}	E_{8}	-	$\begin{aligned} & \pm \boldsymbol{e}_{i} \pm \boldsymbol{e}_{i} \\ & \frac{1}{2}\left(\pm e_{1} \pm \boldsymbol{e}_{2} \pm \boldsymbol{e}_{3} \pm \boldsymbol{e}_{4}\right. \end{aligned}$	$\begin{aligned} & \quad 1 \leqslant i<j \leqslant 8 \\ & \left.\left.E_{5} \pm \boldsymbol{e}_{6} \pm \boldsymbol{e}_{7} \pm \boldsymbol{e}_{8}\right) \quad \text { (even no. of }+ \text { signs }\right) \end{aligned}$	$(23,6,5,4,3,2,1,0)$

The Weyl group, W_{G}, of a real compact semi-simple Lie group G is the symmetry group of the root diagram of the associated complex semi-simple Lie algebra g. It is the group generated by reflections in the hyperplanes perpendicular to the roots. The action of such a reflection S_{r} on an arbitrary vector \boldsymbol{w} in the Euclidean space W, containing the root space, is defined by:

$$
\begin{equation*}
S_{r}: w \rightarrow S_{r} \boldsymbol{w}=\boldsymbol{w}-2[(\boldsymbol{w}, \boldsymbol{r}) /(\boldsymbol{r} \cdot \boldsymbol{r})] r . \tag{2.2}
\end{equation*}
$$

Clearly $S_{-r} \boldsymbol{w}=S_{r} \boldsymbol{w}$ and more generally $S_{a r} \boldsymbol{w}=S_{r} \boldsymbol{w}$ for any $a \neq 0$. These reflections preserve both V^{\perp} and V in the sense that for all $p \in V^{\perp}, S_{r} \boldsymbol{p}=\boldsymbol{p}$ by virtue of the constraint $p . r=0$, whilst if $v \in V$ so that $v \cdot p=0$ for all $p \in V^{\dot{1}}$ then $S_{r} v \in V$ since $\left(S_{r} \boldsymbol{v}\right) \cdot \boldsymbol{p}=0$ for all $\boldsymbol{p} \in V^{\perp}$.

In the case of the roots of the classical Lie algebras:

$$
\begin{aligned}
& S_{\boldsymbol{e}_{i}-\boldsymbol{e}_{j}}: \boldsymbol{w} \rightarrow \boldsymbol{w}-\left(w_{i}-w_{j}\right)\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right) \\
& S_{\boldsymbol{e}_{i}+\boldsymbol{e}_{j}}: \boldsymbol{w} \rightarrow \boldsymbol{w}-\left(w_{i}+w_{j}\right)\left(\boldsymbol{e}_{i}+\boldsymbol{e}_{j}\right) \\
& S_{\boldsymbol{e}_{i}}: \boldsymbol{w} \rightarrow \boldsymbol{w}-2 w_{i} \boldsymbol{e}_{i},
\end{aligned}
$$

so that for $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{d}\right) \in V$:

$$
\begin{align*}
& S_{e_{i}-e_{j}}:\left(\ldots v_{i} \ldots v_{j} \ldots\right) \rightarrow\left(\ldots v_{j} \ldots v_{i} \ldots\right) \tag{2.3}\\
& S_{e_{i}+e_{j}}:\left(\ldots v_{i} \ldots v_{j} \ldots\right) \rightarrow\left(\ldots-v_{j} \ldots-v_{i} \ldots\right) \tag{2.4}\\
& S_{e_{i}}:\left(\ldots v_{i} \ldots\right) \rightarrow\left(\ldots-v_{i} \ldots\right) \tag{2.5}
\end{align*}
$$

where the components of the vector v indicated by dots are unchanged by the reflection.
It is then easy to identify, for each of the classical simple Lie groups, the corresponding Weyl groups formed by closure under successive application of the relevant transformations selected from (2.3), (2.4) and (2.5). In the case of $S U(k+1)$ only (2.3) is relevant and $\mathrm{W}_{\mathrm{SU}(k+1)}$ is the group, of order $(k+1)$!, of all permutations of the components of \boldsymbol{v}. For $\mathrm{SO}(2 k+1)$ and $\mathrm{Sp}(2 k)(2.3)$, (2.4) and (2.5) are all relevant. The Weyl groups $\mathrm{W}_{\mathrm{SO}(2 k+1)}$ and $\mathrm{W}_{\mathrm{Sp}(2 k)}$ are identical, each being the group, of order $2^{k} k$!, of all permutations and independent sign changes of the components of \boldsymbol{v}. On the other hand for $\mathrm{SO}(2 k),(2.5)$ is not relevant and $\mathrm{W}_{\mathrm{SO}(2 k)}$ is the group, of order $2^{k-1} k!$, consisting of all permutations and an even number of independent sign changes of the components of \boldsymbol{v}.

For each exceptional simple Lie group G one advantage of using a natural labelling scheme for the roots of the corresponding exceptional simple Lie algebra g, as described in I, now becomes apparent. Such a scheme makes it clear that the root system, $\boldsymbol{\Sigma}_{g}$, of g contains the root system, $\boldsymbol{\Sigma}_{h}$, of a classical semi-simple Lie algebra h, where h corresponds to a classical subgroup H of G . It follows that W_{G} contains W_{H} as a subgroup, and it is convenient to construct W_{G} by making use of its coset decomposition with respect to W_{H}, namely:

$$
\begin{equation*}
\mathrm{W}_{\mathrm{G}}=\bigcup_{\gamma=1}^{c} \mathrm{~W}_{\mathrm{H}} \boldsymbol{S}_{\gamma} \tag{2.6}
\end{equation*}
$$

where $c=\left|\mathrm{W}_{\mathrm{G}}\right| /\left|\mathrm{W}_{\mathrm{H}}\right|$ and S_{γ} for $\gamma=1,2, \ldots, c$ are a set of coset representatives such that each element S of W_{G} can be written in the form $T S_{\gamma}$ for some element T in W_{H} and some coset representative S_{γ}. It is at this stage that the criterion used in selecting from the set of all natural labelling schemes the particular ones of table 1 becomes apparent. This criterion is that of the minimisation of the index c. The embeddings $G_{2} \supset \mathrm{SU}(3)$,
$\mathrm{F}_{4} \supset \mathrm{SO}(9), \mathrm{E}_{6} \supset \mathrm{SU}(2) \otimes \mathrm{SU}(6), \mathrm{E}_{7} \supset \mathrm{SU}(8)$ and $\mathrm{E}_{8} \supset \mathrm{SO}(16)$ correspond to the minimal possible values of c in (2.6), namely $c=2,3,36,72$ and 135 respectively.

To determine suitable coset representatives S_{γ} it is necessary to consider the Weyl reflections associated with those roots of g which are not roots of h. In the case of G_{2}, for example, the roots additional to those of A_{2} define reflections of the form:

$$
\boldsymbol{S}_{\left(2 \boldsymbol{e}_{i}-\boldsymbol{e}_{j}-\boldsymbol{e}_{k}\right) / 3}: \boldsymbol{w} \rightarrow \boldsymbol{w}-\left(2 w_{i}-w_{j}-w_{k}\right) \frac{1}{3}\left(2 \boldsymbol{e}_{i}-\boldsymbol{e}_{j}-\boldsymbol{e}_{k}\right) .
$$

The space V^{\perp} is spanned by $\boldsymbol{p}=\boldsymbol{e}_{i}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}$, so that for $\boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right)$ in $V, \boldsymbol{v} \cdot \boldsymbol{p}=$ $v_{1}+v_{2}+v_{3}=0$. The use of this constraint gives:

$$
\begin{equation*}
S_{\left(2 e_{i}-e_{j}-e_{k}\right) / 3}:\left(v_{i}, v_{j}, v_{k}\right) \rightarrow\left(-v_{i},-v_{k},-v_{j}\right) . \tag{2.7}
\end{equation*}
$$

Making use of the known structure of the subgroup $\mathrm{W}_{\mathrm{SU}(3)}$ it follows that $\mathrm{W}_{\mathrm{G}_{2}}$ is the group of order 12, consisting of all permutations and simultaneous sign changes of all three components of \boldsymbol{v}. Thus the index of $\mathrm{W}_{\mathrm{SU}(3)}$ in $\mathrm{W}_{\mathrm{G}_{2}}$ is 2 , as claimed, and

$$
\mathrm{W}_{\mathrm{G}_{2}}=\mathrm{W}_{\mathrm{SU}(3)} S_{1} \cup \mathrm{~W}_{\mathrm{SU}(3)} S_{2}
$$

where the coset representatives S_{1} and S_{2} may be chosen to be the identity element:

$$
S_{1}:\left(v_{1}, v_{2}, v_{3}\right) \rightarrow\left(v_{1}, v_{2}, v_{3}\right)
$$

and the reflection:

$$
\begin{equation*}
\boldsymbol{S}_{2}=\boldsymbol{S}_{\left(\mathbf{e}_{1}-2 e_{2}+e_{3}\right) / 3}:\left(v_{1}, v_{2}, v_{3}\right) \rightarrow\left(-v_{3},-v_{2},-v_{1}\right) . \tag{2.8}
\end{equation*}
$$

Similarly, in the case of $\mathrm{F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}$ and E_{8} the roots additional to those of the classical subalgebras $B_{4}, A_{1}+A_{5}, A_{7}$ and D_{8}, respectively, define reflections of the form:

$$
S_{\Sigma_{j} \sigma_{j} e_{j} / 2}: w \rightarrow w-\left(\sum_{i} \sigma_{i} w_{i}\right)^{\frac{1}{2}} \sum_{j} \sigma_{i} \boldsymbol{e}_{j}
$$

with $\sigma_{j}=\mp 1$ for $j=1,2, \ldots, d$. Thus for any vector v in V

$$
\begin{equation*}
S_{\Sigma_{i} \sigma_{j} e_{i} / 2}:\left(\ldots v_{i} \ldots\right) \rightarrow\left(\ldots \frac{1}{2}\left(v_{i}-\sigma_{i} \sum_{i \neq i} \sigma_{i} v_{j}\right) \ldots\right) \tag{2.9}
\end{equation*}
$$

where now the components of the vector v indicated by dots transform in the same way as the particular component v_{i} for which the transformation has been given explicitly. The reflection (2.9) may be simplified where appropriate by use of the constraints $\boldsymbol{v} \cdot \boldsymbol{p}=0$. In order to construct explicitly the corresponding Weyl groups it is necessary to establish the result of repeated application of (2.9) together with (2.3), (2.4) and (2.5) as appropriate until closure is obtained. This has been carried out explicitly elsewhere (Al-Qubanchi 1978) and confirms that the Weyl groups of $\mathrm{F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}$ and E_{8} are groups of order $3\left(2^{4} 4!\right), 36(2!6!), 72(8!)$ and $135\left(2^{7} 8!\right)$. Convenient sets of coset representatives appropriate to subgroups consisting of the Weyl groups of $\mathrm{SO}(9)$, $\mathrm{SU}(2) \otimes \mathrm{SU}(6), \mathrm{SU}(7)$ and $\mathrm{SO}(16)$ are given in table 2 , in which the Weyl group W_{G} of each simple Lie group G is displayed.

This table provides not only an explicit statement of the action of each Weyl group element S on an arbitrary vector v in the root space V, but also the parity, η_{S}, of this element. The parity η_{s} is +1 or -1 according to whether S is generated by an even or an odd number of reflections of the type (2.2).
Table 2.

Lie group G	Order of Weyl group $\left\|W_{G}\right\|$	Restriction on components of $v \in V$	Action of $S \in \mathrm{~W}_{\mathrm{G}}$ on $\boldsymbol{v} \in V$ Components of $S v$		nts of $S_{\gamma} v$	Parity η_{S}
$\mathrm{SU}(k+1)$	$(k+1)$!	$v_{1}+v_{2}+\ldots+v_{k+1}=0$	$\begin{aligned} & \left(v_{\pi_{1}}, v_{\pi_{2}}, \ldots, v_{v_{k+1}}\right) \\ & \pi=\left(\begin{array}{cccc} 1 & 2 & \ldots & k+1 \\ \pi_{1} & \pi_{2} & \ldots & \pi_{k+1} \end{array}\right) \end{aligned}$			$(-)^{\pi}$
$\mathrm{SO}(2 k+1)$	$2^{k} \cdot k!$	-	$\begin{aligned} & \left(\sigma_{1} v_{\pi_{1}}, \sigma_{2} v_{\pi_{2}}, \ldots, \sigma_{k} v_{\pi_{k}}\right) \\ & \pi=\left(\begin{array}{cc} 1 & 2 \ldots k \\ \pi_{1} \pi_{2} \ldots \pi_{k} \end{array}\right) \\ & \sigma_{i}= \pm 1 \text { for } i=1,2, \ldots, k \\ & \sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{k}= \pm 1 \end{aligned}$			$\sigma(-)^{\pi}$
Sp(2k)	$2^{k} \cdot k!$	-	$\left.\begin{array}{l} \left(\sigma_{1} v_{\pi_{1}}, \sigma_{2} v_{\pi_{2}}, \ldots, \sigma_{k} v_{\pi_{k}}\right) \\ \pi=\left(\begin{array}{cc} 1 & 2 \end{array} \ldots k\right. \\ \pi_{1} \pi_{2} \ldots \pi_{k} \end{array}\right) \quad \begin{aligned} & \sigma_{i}= \pm 1 \text { for } i=1,2, \ldots, k \\ & \sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{k}= \pm 1 \end{aligned}$			$\sigma(-)^{\pi}$
$\mathrm{SO}(2 k)$	$2^{k-1} \cdot k!$	-	$\left.\begin{array}{l} \left(\sigma_{1} v_{\pi_{1}}, \sigma_{2} v_{\pi_{2}}, \ldots, \sigma_{k} v_{\pi_{k}}\right) \\ \pi=\left(\begin{array}{c} 1 \\ 2 \end{array} \ldots k\right. \\ \pi_{1} \pi_{2} \ldots \pi_{k} \end{array}\right) \quad \begin{aligned} & \sigma_{i}= \pm 1 \text { for } i=1,2, \ldots, k \\ & \sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{k}=1 \end{aligned}$			$(-)^{\pi}$
G_{2}	$2.3!$	$v_{1}+v_{2}+v_{3}=0$	$\boldsymbol{S v}=\boldsymbol{T} S_{\boldsymbol{\gamma}} \boldsymbol{v}$ with $T \in \mathrm{~W}_{\mathrm{SU}(3)}$ (i) $\gamma=1$ (ii) $\gamma=2$	$\begin{aligned} & \text { (i) } \\ & v_{1} \\ & v_{2} \\ & v_{3} \end{aligned}$	$\begin{aligned} & (\mathrm{ii}) \\ & -v_{3} \\ & -v_{2} \\ & -v_{1} \end{aligned}$	(i) $(-)^{\pi}$ (ii) $-(-)^{\pi}$
F_{4}	$3.2{ }^{4} \cdot 4$!	-	$S v=T S_{\gamma} v$ with $T \in \mathrm{~W}_{\mathrm{SO}(9)}$ (i) $\gamma=1$ (ii) $\gamma=2,3 \quad \tau= \pm 1$	$\begin{aligned} & \text { (i) } \\ & v_{1} \\ & v_{2} \\ & v_{3} \\ & v_{4} \end{aligned}$	(ii) $\begin{aligned} & \frac{1}{2}\left(v_{1}+v_{2}+v_{3}+\tau v_{4}\right) \\ & \frac{1}{2}\left(v_{1}+v_{2}-v_{3}-\tau v_{4}\right) \\ & \frac{1}{2}\left(v_{1}-v_{2}+v_{3}-\tau v_{4}\right) \\ & \frac{1}{2}\left(v_{1}-v_{2}-v_{3}+\tau v_{4}\right) \end{aligned}$	(i) $\sigma(-)^{x}$ (ii) $-\sigma \tau(-)^{\pi}$

(i) $(-)^{\pi}$
(ii) $-(-)^{\pi}(-)^{\rho}$
(iii) $(-)^{\pi}(-)^{\rho}$
(iii)
$\frac{1}{2}\left(v_{\rho 2}-v_{\rho 7}\right)$
$v_{1}+\frac{1}{2}\left(v_{\rho 2}+v_{\rho 7}\right)$
$\frac{1}{2}\left(v_{\rho 3}+v_{\rho 4}+v_{\rho 5}-v_{\rho 6}\right)$
$\frac{1}{2}\left(v_{\rho_{3}}+v_{\rho 4}-v_{\rho 5}+v_{\rho 6}\right)$
$\frac{1}{2}\left(v_{\rho 3}-v_{\rho 4}+v_{\rho 5}+v_{\rho 6}\right)$
$\frac{1}{2}\left(-v_{\rho 3}+v_{\rho 4}+v_{\rho 5}+v_{\rho 6}\right)$
$-v_{1}+\frac{1}{2}\left(v_{\rho 2}+v_{\rho 7}\right)$
$\frac{1}{2}\left(-v_{\rho_{2}}+v_{\rho 7}\right)$

E

$0={ }^{8} a+\cdots+{ }^{2} a+{ }^{1} a$
∞
N
N
Table 2-continued

Lie group G	Order of Weyl group $\left\|W_{\mathrm{G}}\right\|$	Action of $S \in W_{G}$ on $v \leftarrow V$ Components of $S v$		mponents of $S_{\gamma} n$	Parity η_{S}	
E_{8}	$135 \cdot 2^{7} \cdot 8!$	$S v=T S_{\gamma} v$ with $T \in \mathrm{~W}_{\mathrm{SO}(16)}$	(i) v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}	(ii) $\begin{aligned} & \frac{1}{4}\left(3 v_{1}+v_{\rho_{2}}+v_{\rho_{3}} \ldots+v_{\rho_{2 a-1}}-v_{\rho_{2 a}}-v_{\rho_{2 a+1}} \ldots+v_{\rho_{7}}-v_{\rho 8}\right) \\ & \frac{1}{4}\left(v_{1}+3 v_{\rho_{2}}-v_{\rho_{3}} \ldots-v_{\rho_{2 a-1}}+v_{\rho_{2 a}}+v_{\rho_{2 a+1}} \ldots+v_{\rho_{7}}+v_{\rho 8}\right) \\ & \frac{1}{4}\left(v_{1}-v_{\rho_{2}}+3 v_{\rho_{3}} \ldots-v_{\rho_{2 a-1}}+v_{\rho_{2 a}}+v_{\rho_{2 a+1}} \ldots+v_{\rho_{7}}+v_{\rho 8}\right) \\ & \vdots \\ & \frac{1}{4}\left(v_{1}-v_{\rho_{2}}-v_{\rho_{3}} \ldots+3 v_{\rho_{2 a-1}}+v_{\rho_{2 a}}+v_{\rho_{2 a+1}} \ldots+v_{\rho_{7}}+v_{\rho_{8}}\right) \\ & \frac{1}{4}\left(v_{1}-v_{\rho_{2}}-v_{\rho_{3}} \ldots-v_{\rho_{2 a-1}}+v_{\rho_{2 a}}+v_{\rho_{2 a+1}} \ldots+v_{\rho_{7}}-3 v_{\rho_{8}}\right) \\ & \frac{1}{4}\left(v_{1}-v_{\rho_{2}}-v_{\rho_{3}} \ldots-v_{\rho_{2 a-1}}+v_{\rho_{2 a}}+v_{\rho_{2 a+1}} \ldots-3 v_{\rho 7}+v_{\rho 8}\right) \\ & \vdots \\ & \frac{1}{4}\left(v_{1}-v_{\rho_{2}}-v_{\rho_{3}} \ldots-v_{\rho_{2 a-1}}+v_{\rho_{2 a}}-3 v_{\rho_{2 a+1}} \ldots+v_{\rho 7}+v_{\rho 8}\right) \\ & \frac{1}{4}\left(-v_{1}+v_{\rho_{2}}+v_{\rho_{3}} \ldots+v_{\rho_{2 a-1}}+3 v_{\rho_{2 a}}-v_{\rho_{2 a+1}} \ldots-v_{\rho 7}-v_{\rho 8}\right) \end{aligned}$	(iii) $\begin{aligned} & \frac{1}{2}\left(v_{1}+v_{\rho 2}+v_{\rho_{3}}+\tau v_{\rho 4}\right) \\ & \frac{1}{2}\left(v_{1}+v_{\rho_{2}}-v_{\rho_{3}}-\tau v_{\rho 4}\right) \\ & \frac{1}{2}\left(v_{1}-v_{\rho_{2}}+v_{\rho_{3}}-\tau v_{\rho 4}\right) \\ & \frac{1}{2}\left(v_{1}-v_{\rho 2}-v_{\rho_{3}}+\tau v_{\rho 4}\right) \\ & \frac{1}{2}\left(v_{\rho 5}+v_{\rho 6}+v_{\rho 7}+\tau v_{\rho 8}\right) \\ & \frac{1}{2}\left(v_{\rho 5}+v_{\rho 6}-v_{\rho 7}-\tau v_{\rho 8}\right) \\ & \frac{1}{2}\left(v_{\rho 5}-v_{\rho 6}+v_{\rho 7}-\tau v_{\rho 8}\right) \\ & \frac{1}{2}\left(v_{\rho 5}-v_{\rho 6}-v_{\rho 7}+\tau v_{\rho 8}\right) \end{aligned}$	(i) $(-)^{\pi}$ (ii) $-(-1)^{a}(-)^{\pi}(-)^{\rho}$ (iii) $(-)^{\pi}(-)^{p}$

3. G-dominance

Given a vector v in the root space V of some semi-simple Lie algebra g associated with a Lie group G there exists a set of vectors $\left\{S v: S \in \mathrm{~W}_{\mathrm{G}}\right\}$ each of which may be said to be G-equivalent to \boldsymbol{v}, and a unique G-dominant vector $\boldsymbol{v}_{\mathrm{G}}$ which is defined to be the highest vector of this set. Using the information in table 2 it is a straightforward task to construct, from a given vector \boldsymbol{v}, the corresponding class of G-equivalent vectors and to identify the G -dominant vector $\boldsymbol{v}_{\mathrm{G}}$.

For example the vector $v=(0,1,-3,2)$ in the root space V of A_{3} is $\mathrm{SU}(4)$ equivalent to others such as $(1,0,-3,2),(-3,2,1,0)$, formed by permuting the components of \boldsymbol{v}. The corresponding $\mathrm{SU}(4)$-dominant vector, $\boldsymbol{v}_{\mathrm{SU}(4)}$, is clearly $(2,1,0,-3)$. Similarly the vector $v=(-4,2,2,1,3,4,-2,-2)$ in the root space of E_{8} is E_{8}-equivalent to others such as $(4,2,2,1,3,4,2,-2),(4,4,3,2,2,2,2,-1) \ldots$ formed by permuting the components of v and by changing the signs of these components in pairs in accordance with (2.3) and (2.4). Still other vectors such as $(-5,3,3,0,2,3,-3,-3),\left(\frac{13}{2}, \frac{5}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}\right), \ldots$ may be shown to be E_{8}-equivalent to v through the additional application of (2.9). However, the identification of $v_{\mathrm{E}_{8}}$ is by no means trivial.

In order to facilitate this and similar identifications it should be pointed out that the specific selection of coset representatives S_{γ} made in table 2 for each exceptional Lie group G has been made in such a way that if v is G-dominant then $S_{\gamma} v$ is H-dominant where H is the appropriate classical Lie subgroup of G . Conversely given that v is H -dominant it is possible to use table 2 to identify a particular coset representative S_{γ} such that there exists T in the Weyl group W_{H} of H with the property that $T S_{\gamma} v$ is G-dominant. The action of the required S_{γ} on each possible H-dominant vector v for each of the exceptional simple Lie groups G is given in table 3. This may be used, as in the following example, to identify G-dominant vectors. The $\mathrm{SO}(16)$-dominant vector equivalent to $(-4,2,2,1,3,4,-2,-2)$ is $v_{\text {SO(16) }}=(4,4,3,2,2,2,2,-1)$ for which $v_{2}+v_{3}+v_{4}+v_{6}+v_{7}-v_{8}=16>v_{1}=4 \geqslant v_{2}+v_{3}+v_{4}-v_{5}-v_{6}-v_{7}-v_{8}=2$. It follows that the required vector, $S_{\gamma} v_{\mathrm{SO}(16)}$ (from which the corresponding E_{8}-dominant vector $v_{\mathrm{E} 8}$ may be found through the application of some element T of $\mathrm{W}_{\mathrm{SO}(16)}$), is the vector whose components correspond to case (ii) of the entries appropriate to E_{8} in table 3, that is $(7,1,0,-1,-1,-1,-1,2)$. Applying permutations and sign changes of pairs of components then gives the required E_{8}-dominant vector $\boldsymbol{v}_{\mathrm{E}_{\gamma}}=(7,2,1,1,1,1,1,0)$.

The necessary and sufficient conditions for a vector \boldsymbol{v} to be G-dominant are implicit in table 3. Conditions appropriate to the classical groups have been included for completeness by identifying H with G . The conditions appropriate to each exceptional group G are those specified by case (i) of the entries tabulated, together with the conditions for H -dominance, which are also given.

As explained in I it is useful in developing labels for the irreducible representations of a Lie group G, associated with a semi-simple Lie algebra of rank k, to project each labelling, G-dominant highest weight vector in the k-dimensional root space V of W onto a vector in another k-dimensional subspace Λ of W. This space Λ is spanned by all the vectors \boldsymbol{e}_{i} with $i=1,2, \ldots, d$ except those with $i=m$, where in the notation of I , the values of m are defined so that each vector p of V^{\perp} takes the form $p=$ $\boldsymbol{e}_{i}+\boldsymbol{e}_{i+1}+\ldots+\boldsymbol{e}_{i+j-1}+\boldsymbol{e}_{m}$. The ordering of the basis vectors \boldsymbol{e}_{i} of W is then such that the projection is onto vectors whose last ($d-k$)-components, with respect to this ordering, are zero. Such a projection, P, may be applied to any vector \boldsymbol{v} of V to give a vector $\boldsymbol{\lambda}$ of
Table 3.

Lie group G	Classical subgroup H	$\boldsymbol{v} \in V, \boldsymbol{v}$ H-dominant Classes (i), (ii), \ldots of vectors \boldsymbol{v}	Components $S_{\gamma} v$ such that $T S_{\gamma} v$ is G-dominant for some $T \in \mathrm{~W}_{\mathrm{H}}$ for each class (i), (ii) \ldots of H -dominant vectors \boldsymbol{v}
$\mathrm{SU}(k+1)$	$\mathrm{SU}(k+1)$	$\begin{aligned} & v_{1}+v_{2}+\ldots+v_{k+1}=0 \\ & v_{1} \geq v_{2} \geq \ldots \geq v_{k+1} \end{aligned}$	
$\mathrm{SO}(2 k+1)$	$\mathrm{SO}(2 k+1)$	$v_{1} \geqslant v_{2} \geqslant \ldots \geqslant v_{k} \geqslant 0$	
Sp(2k)	$\mathrm{Sp}(2 k)$	$v_{1} \geqslant v_{2} \geqslant \ldots \geqslant v_{k} \geqslant 0$	
$\mathrm{SO}(2 k)$	$\mathrm{SO}(2 k)$	$v_{1} \geqslant v_{2} \geqslant \ldots \geqslant v_{k-1} \geqslant v_{k} \geqslant-v_{k-1}$	
G_{2}	SU(3)	$\begin{aligned} & v_{1}+v_{2}+v_{3}=0 \\ & v_{1} \geq v_{2} \geqslant v_{3} \end{aligned}$ (i) $v_{1} \geqslant 2 v_{2}-v_{3}$ (ii) $2 v_{2}-v_{3}>v_{1}$	$\text { (i) } \begin{array}{lll} & v_{1} & \text { (ii) } \end{array}-v_{3} \begin{array}{ll} v_{2} & -v_{2} \\ & v_{3} \end{array}$
F_{4}	$\mathrm{SO}(9)$	$v_{1} \supseteq v_{2} \supseteq v_{3} \supseteq v_{4} \supseteq 0$ (i) $v_{1} \geqslant v_{2}+v_{3}+v_{4}$ (ii) $v_{2}+v_{3}+v_{4}>v_{1}$	
E_{6}	$\operatorname{SU}(2) \times \operatorname{SU}(6)$	$\begin{aligned} & v_{1}+v_{8}=0, v_{2}+v_{3}+\ldots+v_{7}=0 \\ & v_{1} \geqslant v_{8}, v_{2} \geqslant v_{3} \geqslant \ldots \geqslant v_{7} \end{aligned}$ (i) $v_{1} \geqslant v_{2}+v_{3}+v_{4}$ (ii) $v_{2}+v_{3}+v_{4}>v_{1} \geq v_{2}+v_{5}+v_{6}$ (iii) $v_{2}+v_{5}+v_{6}>v_{1}$	(i) v_{1} (ii) $\frac{1}{2}$ (iii) $\begin{aligned} & \frac{1}{2}\left(v_{2}-v_{7}\right) \\ & v_{1}+\frac{1}{2}\left(v_{2}+v_{7}\right) \\ & \frac{1}{2}\left(v_{3}+v_{4}+v_{5}-v_{6}\right) \\ & \frac{1}{2}\left(v_{3}+v_{4}-v_{5}+v_{6}\right) \\ & \frac{1}{2}\left(v_{3}-v_{4}+v_{5}+v_{6}\right) \\ & \frac{1}{2}\left(-v_{3}+v_{4}+v_{5}+v_{6}\right) \\ & -v_{1}+\frac{1}{2}\left(v_{2}+v_{7}\right) \\ & \frac{1}{2}\left(-v_{2}+v_{7}\right) \end{aligned}$

Λ in accordance with the prescription:

$$
\begin{equation*}
P: v \rightarrow \lambda=v-\sum_{p \in V^{+}} v_{m} p \tag{3.1}
\end{equation*}
$$

The inverse relationship is:

$$
\begin{equation*}
P^{-1}: \lambda \rightarrow v=\lambda-\sum_{p \in V^{-}}[(\lambda \cdot p) /(p \cdot p)] p ; \tag{3.2}
\end{equation*}
$$

the consequences of these relations are spelled out in table 4.
It should be stressed that the ordering relations on vectors in W, involving the first non-vanishing difference of components, is applicable directly to vectors v in V but only indirectly to vectors $\boldsymbol{\lambda}$ in Λ. Thus for any two vectors $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ in $\Lambda, \boldsymbol{\lambda}>\boldsymbol{\mu}$ if and only if $P^{-1} \lambda>P^{-1} \mu$. For example in the case of the group $\mathrm{SU}(3)$ for which the space V^{-L} is spanned by $\boldsymbol{p}=\boldsymbol{e}_{1}+\boldsymbol{e}_{1}+\boldsymbol{e}_{3}=\left(\begin{array}{ll}1 & 11\end{array}\right)$ the vectors $\boldsymbol{\lambda}=(100)$ and $\boldsymbol{\mu}=\left(\begin{array}{ll}110\end{array}\right)$ in Λ are such that $(100)>(110)$ since $P^{-1} \boldsymbol{\lambda}=\left(\frac{2}{3}-\frac{1}{3}-\frac{1}{3}\right)$ and $P^{-1} \boldsymbol{\mu}=\left(\frac{1}{3} \frac{1}{3}-\frac{2}{3}\right)$, whilst $\left(\frac{2}{3}-\frac{1}{3}-\frac{1}{3}\right)>$ $\left(\frac{1}{3} \frac{1}{3}-\frac{2}{3}\right)$ by virtue of the lexicographic ordering in V.

In the same way $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ are defined to be G-equivalent if and only if $P^{-1} \boldsymbol{\lambda}$ and $P^{-1} \boldsymbol{\mu}$ are G-equivalent. Moreover $\boldsymbol{\lambda}$ is G -dominant if and only if $P^{-1} \boldsymbol{\lambda}$ is G -dominant. This implies that the G-dominance of vectors $\boldsymbol{\lambda}$ in Λ should be tested through the use of (3.2). Rather than do this from first principles whenever required the necessary and sufficient conditions for a vector $\boldsymbol{\lambda}$ in Λ to be G-dominant have been included in table 4. Finally in this table the further conditions on the components of such a G-dominant vector $\boldsymbol{\lambda}_{\mathrm{G}}$ in Λ for it to label an irreducible representation of G have been displayed. They may be obtained from I. As implied in this previous paper, the highest weight, $\boldsymbol{M}_{\mathrm{G}}$, of the irreducible representation of G labelled by $\boldsymbol{\lambda}_{\mathrm{G}}$, is the G -dominant vector in V defined by

$$
\begin{equation*}
\boldsymbol{M}_{\mathrm{G}}=P^{-1} \boldsymbol{\lambda}_{\mathrm{G}} \tag{3.3}
\end{equation*}
$$

4. Branching rules

The character of the irreducible representation $\boldsymbol{\lambda}_{\mathrm{G}}$ of the semi-simple Lie group G having highest weight $\boldsymbol{M}_{\mathrm{G}}$ is given, in the class specified by parameters $\phi=$ ($\phi_{1}, \phi_{2}, \ldots \phi_{d}$), by the formula due to Weyl (1926):
$\chi^{\lambda_{\mathrm{G}}}(\boldsymbol{\phi})=\sum_{S \in \mathrm{~W}_{\mathrm{G}}} \eta_{S} \exp \left[\mathrm{i} S\left(\boldsymbol{R}_{\mathrm{G}}+\boldsymbol{M}_{\mathrm{G}}\right) \cdot \boldsymbol{\phi}\right] / \sum_{S \in \mathrm{~W}_{\mathrm{G}}} \eta_{S} \exp \left(\mathrm{i} S \boldsymbol{R}_{\mathrm{G}} \cdot \boldsymbol{\phi}\right)$
where the summations are carried out over all elements S of the Weyl group W_{G} and $\boldsymbol{R}_{\mathrm{G}}$ is half the sum of the positive roots of the corresponding Lie algebra g. The G-dominant vectors $\boldsymbol{R}_{\mathrm{G}}$ and $\boldsymbol{M}_{\mathrm{G}}$ lie in the space V which is embedded in W. The vector $\boldsymbol{\phi}$ lies in the same space V, orthogonal where appropriate to V^{\perp}.

The branching rules arising from the restriction of group elements of one of the exceptional Lie groups G to its naturally embedded classical Lie subgroup H may be established in many ways. One way involves recognising that the Weyl group W_{H} is, for such an embedding, a subgroup of W_{G} and that the class parameters of H coincide with those of G . Thus making use of the coset representatives S_{γ} defined in $\$ 2$ it follows that:
$\chi^{\boldsymbol{\lambda}_{\mathrm{G}}(\boldsymbol{\phi})}=\sum_{\gamma=1}^{c} \eta_{S_{\gamma}} \sum_{T \in \mathbb{W}_{\mathrm{H}}} \eta_{T} \exp \left[\mathrm{i} T S_{\gamma}\left(\boldsymbol{R}_{\mathrm{G}}+\boldsymbol{M}_{\mathrm{G}}\right) \cdot \boldsymbol{\phi}\right] / \sum_{\gamma=1}^{c} \eta_{S_{\gamma}} \sum_{T \in \mathrm{~W}_{\mathrm{H}}} \eta_{T} \exp \left(i T S_{\gamma} \boldsymbol{R}_{\mathrm{G}} \cdot \boldsymbol{\phi}\right)$.
Table 4.

Lie group G	$\boldsymbol{\lambda}=\boldsymbol{P} \boldsymbol{v}$ for \boldsymbol{v}		$v=P^{-1} \lambda$ for $\lambda \in \Lambda$	Conditions for $\boldsymbol{\lambda}$ to be G-dominant	Additional conditions for $\boldsymbol{\lambda}$ to label an irreducible representation
$\mathrm{SU}(k+1)$	$\lambda_{i}=v_{i}-v_{k+1}$	$i=1,2, \ldots, k$	$\begin{aligned} & v_{i}=\lambda_{i}-\frac{1}{k+1} l \quad i=1,2, \ldots, k \\ & v_{k+1}=-\frac{1}{k+1} l \\ & l=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{k} \end{aligned}$	$\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{k} \geqslant 0$	λ_{i} integer for $i=1,2, \ldots, k$
$\mathrm{SO}(2 k+1)$	$\lambda_{i}=v_{i}$	$i=1,2, \ldots, k$	$v_{i}=\lambda_{i} \quad i=1,2, \ldots, k$	$\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{k} \geqslant 0$	(i) λ_{i} integer for $i=1,2, \ldots, k$ (ii) $\lambda_{i}-\frac{1}{2}$ integer for $i=1,2, \ldots, k$
$\mathrm{Sp}(2 k)$	$\lambda_{i}=v_{i}$	$i=1,2, \ldots, k$	$v_{i}=\lambda_{i} \quad i=1,2, \ldots, k$	$\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{k} \geqslant 0$	λ_{i} integer for $i=1,2, \ldots, k$
SO(2k)	$\lambda_{i}=v_{i}$	$i=1,2, \ldots, k$	$v_{i}=\lambda_{i} \quad i=1,2, \ldots, k$	$\lambda_{1} \geqslant \lambda_{2} \geq \ldots \geqslant \lambda_{k-1} \geq \lambda_{k} \geqslant-\lambda_{k-1}$	(i) λ_{i} integer for $i=1,2, \ldots, k$ (ii) $\lambda_{i}-\frac{1}{2}$ integer for $i=1,2, \ldots, k$
G_{2}	$\lambda_{i}=v_{i}-v_{3}$	$i=1,2$	$\begin{aligned} & v_{1}=\frac{1}{3}\left(2 \lambda_{1}-\lambda_{2}\right) \\ & v_{2}=\frac{1}{3}\left(-\lambda_{1}+2 \lambda_{2}\right) \\ & v_{3}=\frac{1}{3}\left(-\lambda_{1}-\lambda_{2}\right) \end{aligned}$	$\begin{aligned} & \lambda_{1} \supseteq \lambda_{2} \supseteq 0 \\ & \lambda_{1} \supseteq 2 \lambda_{2} \end{aligned}$	λ_{i} integer for $i=1,2$
F4	$\lambda_{i}=v_{i}$	$i=1,2,3,4$	$v_{i}=\lambda_{i} \quad i=1,2,3,4$	$\begin{aligned} & \lambda_{1} \geqslant \lambda_{2} \geqslant \lambda_{3} \geqslant \lambda_{4} \geqslant 0 \\ & \lambda_{1} \geqslant \lambda_{2}+\lambda_{3}+\lambda_{4} \end{aligned}$	(i) λ_{i} integer for $i=1,2,3,4$ (ii) $\lambda_{i}-\frac{1}{2}$ integer for $i=1,2,3,4$
E_{6}	$\begin{aligned} & \lambda_{1}=v_{1}-v_{8} \\ & \lambda_{i}=v_{i}-v_{7} \end{aligned}$	$i=2,3, \ldots, 6$	$\begin{aligned} & v_{1}=-v_{8}=\frac{1}{2} \lambda_{1} \\ & v_{i}=\lambda_{i}-\frac{1}{6} l \quad i=2,3, \ldots, 6 \\ & v_{7}=-\frac{1}{6} l \\ & l=\lambda_{2}+\lambda_{3}+\ldots+\lambda_{6} \end{aligned}$	$\begin{aligned} & \lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{6} \geqslant 0 \\ & \lambda_{1} \geqslant \lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}-\lambda_{6} \end{aligned}$	λ_{i} integer for $i=1,2, \ldots, 6$ $\sum_{i=1}^{6} \lambda_{i}$ even
E_{7}	$\lambda_{i}=v_{i}-v_{8}$	$i=1,2, \ldots, 7$	$\begin{aligned} & v_{i}=\lambda_{i}--\frac{1}{8} l \quad i=1,2, \ldots, 7 \\ & v_{8}=-\frac{1}{8} l \\ & l=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{7} \end{aligned}$	$\begin{aligned} & \lambda_{1} \geqslant \lambda_{2} \geqq \ldots \geqslant \lambda_{7} \geqslant 0 \\ & \lambda_{1} \geqslant \lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}-\lambda_{6}-\lambda_{7} \end{aligned}$	λ_{i} integer for $i=1,2, \ldots, 7$ $\Sigma_{i=1}^{7} \lambda_{i}$ even
E_{8}	$\lambda_{i}=v_{i}$	$i=1,2, \ldots, 8$	$v_{i}=\lambda_{i} \quad i=1,2, \ldots, 8$	$\begin{aligned} & \lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{7} \geqslant \lambda_{8} \geqslant-\lambda_{7} \\ & \lambda_{1} \geqslant \lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}+\lambda_{6}+\lambda_{7}-\lambda_{8} \end{aligned}$	(i) λ_{i} integer for $i=1,2, \ldots, 8$ (ii) $\lambda_{i}-\frac{1}{2}$ integer for $i=1,2, \ldots, 8$ $\Sigma_{i=1}^{8} \lambda_{i}$ even

Dividing the numerator and denominator by

$$
\sum_{T \in \mathbb{W}_{H}} \eta_{T} \exp \left(\mathrm{i} T \boldsymbol{R}_{H} \cdot \boldsymbol{\phi}\right)
$$

allows this character (4.2) to be written as a quotient of sums of characters of H. To be precise:

$$
\begin{equation*}
\chi^{\lambda_{G}}(\boldsymbol{\phi})=\sum_{\gamma=1}^{c} \eta_{S_{\gamma}} \chi^{\boldsymbol{\sigma}_{H}^{(\nu)}}(\boldsymbol{\phi}) / \sum_{\gamma=1}^{c} \eta_{S_{\gamma}} \chi^{\boldsymbol{\tau}_{H}^{(\gamma)}}(\boldsymbol{\phi}), \tag{4.3}
\end{equation*}
$$

where $\boldsymbol{\sigma}_{\mathrm{H}}^{(\gamma)}$ and $\boldsymbol{\tau}_{\mathrm{H}}^{(\gamma)}$ label the irreducible representations of H having highest weights $\boldsymbol{S}_{\gamma}\left(\boldsymbol{R}_{\mathrm{G}}+\boldsymbol{M}_{\mathrm{G}}\right)-\boldsymbol{R}_{\mathrm{H}}$ and $\boldsymbol{S}_{\gamma} \boldsymbol{R}_{\mathrm{G}}-\boldsymbol{R}_{\mathrm{H}}$ respectively, i.e.

$$
\begin{equation*}
\boldsymbol{\sigma}_{\mathrm{H}}^{(\gamma)}=P\left(\boldsymbol{S}_{\gamma}\left(\boldsymbol{R}_{\mathrm{G}}+\boldsymbol{M}_{\mathrm{G}}\right)-\boldsymbol{R}_{\mathrm{H}}\right) \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{\tau}_{\mathrm{H}}^{(\gamma)}=P\left(\boldsymbol{S}_{\gamma} \boldsymbol{R}_{\mathrm{G}}-\boldsymbol{R}_{\mathrm{H}}\right) . \tag{4.5}
\end{equation*}
$$

It should be stressed that the particular choice made of coset representatives, S_{γ}, whose action is defined in table 3 is now highly advantageous since this action on the G-dominant vectors $\boldsymbol{R}_{\mathrm{G}}+\boldsymbol{M}_{\mathrm{G}}$ and $\boldsymbol{M}_{\mathrm{G}}$ is guaranteed to give H -dominant vectors. Moreover the vectors $\boldsymbol{S}_{\gamma}\left(\boldsymbol{R}_{\mathrm{G}}+\boldsymbol{M}_{\mathrm{G}}\right)-\boldsymbol{R}_{\mathrm{H}}$ and $\boldsymbol{S}_{\gamma} \boldsymbol{R}_{\mathrm{G}}-\boldsymbol{R}_{\mathrm{H}}$ are also H-dominant as required for $\boldsymbol{\sigma}_{\mathrm{H}}^{(\gamma)}$ and $\boldsymbol{\tau}_{\mathrm{H}}^{(\gamma)}$, defined by (4.4) and (4.5), to be irreducible representation labels as they stand, without modification.

Thus making use of $\boldsymbol{R}_{\mathrm{G}}$ and $\boldsymbol{R}_{\mathrm{H}}$ as given in table 1, the action of \boldsymbol{S}_{γ} as defined in table 2 , and the projection P defined in table 4 it is possible to write out the expansion (4.3) explicitly for each exceptional Lie group G.

This has already been done (King and Al-Qubanchi 1978) for G_{2}, and yields in the present notation:
$\chi^{\left(\lambda_{1} \lambda_{2}\right)}(\boldsymbol{\phi})=\left(\chi^{\left\{\lambda_{1}+1, \lambda_{2}\right\}}(\boldsymbol{\phi})-\chi^{\left\{\lambda_{1}+1, \lambda_{1}-\lambda_{2}+1\right\}}(\boldsymbol{\phi})\right) /\left(\chi^{\{1\}}(\boldsymbol{\phi})-\chi^{\{12\}}(\boldsymbol{\phi})\right)$
where the brackets () and $\left\}\right.$ serve to distinguish between the characters of G_{2} and its subgroup $\mathrm{SU}(3)$.

Similarly in the case of F_{4} the same formula (4.3) gives

$$
\begin{align*}
\chi^{\left(\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}\right)}(\boldsymbol{\phi}) & =\left\{\chi^{\left[\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}\right]}(\boldsymbol{\phi})\right. \\
& -\chi^{\left.-\frac{1}{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}\right)+\frac{3}{2}, \frac{1}{2}\left(\lambda_{1}+\lambda_{2}-\lambda_{3}-\lambda_{4}\right)+\frac{1}{2}, \frac{1}{2}\left(\lambda_{1}-\lambda_{2}+\lambda_{3}-\lambda_{4}\right)+\frac{1}{2}, \frac{1}{2}\left(\lambda_{1}-\lambda_{2}-\lambda_{3}+\lambda_{4}\right)+\frac{1}{2}\right]}(\boldsymbol{\phi}) \\
& \left.+\chi^{\left[\frac{1}{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}-\lambda_{4}\right)+1, \frac{1}{2}\left(\lambda_{1}+\lambda_{2}-\lambda_{3}+\lambda_{4}\right)+1, \frac{1}{2}\left(\lambda_{1}-\lambda_{2}+\lambda_{3}+\lambda_{4}\right)+1, \frac{1}{2}\left(\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}\right)\right]}(\boldsymbol{\phi})\right\} \\
& \times 1 /\left\{\chi^{[2]}(\boldsymbol{\phi})-\chi^{\left[\frac{\left[\frac{3}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}\right]}{2}\right.}(\boldsymbol{\phi})-\chi^{[13]}(\boldsymbol{\phi})\right\} \tag{4.7}
\end{align*}
$$

where now the brackets () and [] serve to distinguish between the characters of F_{4} and its subgroup $\mathrm{SO}(9)$.

Formulae similar to (4.6) and (4.7) may be written down for E_{6}, E_{7} and E_{8} but they contain in the numerator and denominator c terms where $c=36,72$ and 135 respectively. Nonetheless they do serve to define exceptional group characters in terms of classical group characters, and in principle they may be used to determine the corresponding branching multiplicities $B_{\mu_{\mathrm{H}}}^{\lambda_{\mathrm{G}}}$, appropriate to the restriction from G to H , which are defined by the expansion:

$$
\begin{equation*}
\chi^{\lambda_{\mathrm{G}}}(\boldsymbol{\phi})=\sum_{\mu_{\mathrm{H}}} B_{\mu_{\mathrm{H}}}^{\lambda_{\mathrm{G}}} \chi^{\mu_{\mathrm{H}}}(\boldsymbol{\phi}) \tag{4.8}
\end{equation*}
$$

By means of a stroke of good fortune in the case of G_{2}, which does not appear to apply to the remaining exceptional Lie groups, the quotient (4.6) may be evaluated explicitly (King and Al-Qubanchi 1978) in the form (4.8) to yield the branching multiplicities for the restriction from G_{2} to $\mathrm{SU}(3)$.

In general these multiplicities may be found by systematically building up the numerator of (4.3), working from the highest representation $\boldsymbol{\sigma}_{\mathrm{H}}^{(\gamma)}$ downwards, by multiplying the denominator of (4.3) by characters $\chi^{\mu_{H}}(\phi)$ chosen so as to give the required terms, after appropriate cancellations have been made involving the factors $\eta_{S_{\gamma}}$. This procedure involves only a knowledge of the Kronecker product multiplicities of the classical group H defined by:

$$
\begin{equation*}
\chi^{\boldsymbol{\tau}_{\mathrm{H}}}(\boldsymbol{\phi}) \chi^{\boldsymbol{\sigma}_{\mathrm{H}}}(\boldsymbol{\phi})=\sum_{\boldsymbol{\rho}_{\mathrm{H}}} K_{\boldsymbol{\rho}_{\mathrm{H}}}^{\boldsymbol{\tau}_{\mathrm{H}} \boldsymbol{\sigma}_{\mathrm{H}}} \chi^{\boldsymbol{\rho}_{\mathrm{H}}}(\boldsymbol{\phi}) . \tag{4.9}
\end{equation*}
$$

Some results for the branching multiplicities for the restriction from F_{4} to $\mathrm{SO}(9)$ have been obtained in this way from (4.7) and given elsewhere (Al-Qubanchi 1978). However the method is very tedious, comparing most unfavourably with that used by Wybourne and Bowick (1977) based on the method of elementary multiplets due to Sharp and Lam (1969). An alternative approach to this branching rule problem arises, as shown in the next section, as a by-product of a method of calculating weight multiplicities.

5. Weight multiplicities

There is another expansion of the character (4.1) of an irreducible representation $\boldsymbol{\lambda}_{\mathrm{G}}$ which serves to define the weights \boldsymbol{m} of this representation. This expansion takes the form:

$$
\begin{equation*}
\chi^{\lambda_{\mathrm{G}}}(\boldsymbol{\phi})=\sum_{m} M_{m}^{\lambda_{\mathrm{C}}} \exp (\mathrm{i} \boldsymbol{m} \cdot \boldsymbol{\phi}) \tag{5.1}
\end{equation*}
$$

where the coefficient $M_{m}^{\lambda_{\mathrm{G}}}$ is the multiplicity of the weight \boldsymbol{m} in the representation λ_{G}.
This expansion may be effected in many ways. For the classical Lie groups an extensive tabulation of weight multiplicities already exists (King and Plunkett 1976). For the exceptional Lie groups G it is convenient to make use of the branching rule, (4.8), associated with the restriction from G to a classical Lie subgroup H, together with the character formula (5.1) appropriate to H :

$$
\begin{equation*}
\chi^{\mu_{\mathrm{H}}}(\boldsymbol{\phi})=\sum_{\boldsymbol{m}} M_{m}^{\mu_{\mathrm{H}}} \exp (\mathrm{i} \boldsymbol{m} \cdot \boldsymbol{\phi}) \tag{5.2}
\end{equation*}
$$

Comparison with (5.1) then yields:

$$
\begin{equation*}
M_{m}^{\lambda_{\mathrm{G}}}=\sum_{\mu_{\mathrm{H}}} B_{\mu_{\mathrm{H}}}^{\lambda_{\mathrm{G}}} M_{m}^{\mu_{\mathrm{H}}} \tag{5.3}
\end{equation*}
$$

If the branching multiplicities are known as well as the weight multiplicities of the classical group H this provides a very simple way of determining the weights and the weight multiplicities of the exceptional group G. It should be noted that (5.3) implies that every weight of a representation of G is necessarily the weight of some representation of H . This is a consequence of the selection of H as a subgroup embedded naturally in G which allows the class parameters for G and H in (5.1) and (5.2) to be
identified. It is now possible to exploit the fact that the Weyl group W_{H} is a subgroup of W_{G}.

The dependence of the character formula (4.1) on the elements S of the Weyl group W_{G} is such that, on expanding in the form (5.1), it is clear that

$$
\begin{equation*}
M_{S m}^{\lambda_{G}}=M_{m}^{\lambda_{\mathrm{G}}} \tag{5.4}
\end{equation*}
$$

for all S in W_{G}. In the case for which S is a coset representative, S_{γ}, of W_{G} with respect to W_{H} this yields, through (5.3), the non-trivial constraints:

$$
\begin{equation*}
M_{m}^{\lambda_{\mathrm{G}}}=M_{S_{\gamma} m}^{\lambda_{\mathrm{G}}}=\sum_{\mu_{\mathrm{H}}} B_{\mu_{\mathrm{H}}}^{\lambda_{\mathrm{G}}} M_{S_{\gamma}}^{\mu_{\mathrm{H}}} \tag{5.5}
\end{equation*}
$$

for $\gamma=1,2, \ldots, c$, where $M_{S_{\gamma} m}^{\mu_{\mathrm{H}}}$ has a priori no connection with $M_{m}^{\mu_{\mathrm{H}}}$.
Given any particular weight \boldsymbol{m} it is only necessary by virtue of (5.4) to evaluate the multiplicity of the corresponding G-dominant weight $\boldsymbol{m}_{\mathrm{G}}$. Then (5.5) gives:

$$
\begin{equation*}
M_{m_{\mathrm{G}}}^{\lambda_{\mathrm{G}}}=\sum_{\mu_{\mathrm{H}}} B_{\mu_{\mathrm{H}}}^{\lambda_{\mathrm{G}}} M_{\gamma_{\gamma} \mathrm{m}_{\mathrm{G}}}^{\mu_{\mathrm{H}}} \tag{5.6}
\end{equation*}
$$

for all coset representatives S_{γ}, which, as pointed out in $\S 3$, have been chosen so as to ensure that $S_{\gamma} \boldsymbol{m}_{\mathrm{G}}$ is H-dominant. This relationship between dominant weight multiplicities of G and those of H , involving the branching multiplicities, serves as a powerful weapon in tackling the problems of evaluating both weight multiplicities of G and the branching multiplicities.

Since the weights $\boldsymbol{m}_{\mathrm{G}}$ and $\boldsymbol{S}_{\gamma} \boldsymbol{m}_{\mathrm{G}}$ appearing in (5.6) are G and H -dominant respectively they are necessarily highest weights of some irreducible representations of G and H : in fact those labelled by $\boldsymbol{\nu}_{\mathrm{G}}=P \boldsymbol{m}_{\mathrm{G}}$ and $\boldsymbol{\sigma}_{\mathrm{H}}^{\gamma}=P S_{\gamma} \boldsymbol{m}_{\mathrm{G}}$, where in the labelling scheme adopted here, the projection operator P is the same for both the groups G and H . It is convenient, without it is hoped any great risk of confusion, to define:

$$
\begin{equation*}
M_{\nu \mathrm{G}}^{\lambda_{\mathrm{G}}}=M_{m_{\mathrm{G}}}^{\lambda} \quad \text { and } \quad M_{\sigma_{\gamma \mathrm{H}}}^{\mu_{\mathrm{H}}}=M_{\mathcal{S}_{\gamma} m_{\mathrm{O}}}^{\mu_{\mathrm{H}}} \tag{5.7}
\end{equation*}
$$

so that

$$
\begin{equation*}
M_{\nu_{\mathrm{G}}}^{\lambda_{\mathrm{G}}}=\sum_{\mu_{\mathrm{H}}} B_{\mu_{\mathrm{H}}}^{\lambda_{\mathrm{G}}} M_{\boldsymbol{\sigma}_{\gamma \mathrm{H}}}^{\mu_{\mathrm{H}}} \quad \text { for } \gamma=1,2, \ldots, c \tag{5.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{\sigma}_{\mathrm{H}}^{\gamma}=P S_{\gamma} P^{-1} \boldsymbol{\nu}_{\mathrm{G}} \tag{5,9}
\end{equation*}
$$

Thus in order to maximise the benefit obtained from (5.8) it is useful to tabulate for each representation label $\boldsymbol{\nu}_{\mathrm{G}}$ the complete list of representation labels $\boldsymbol{\sigma}_{\mathrm{H}}^{\gamma}$ defined by (5.9). Unfortunately P and S_{γ} do not in general commute so it is necessary to make use of both table 2, defining the action of S_{γ}, and table 4 defining that of P, in constructing such a list. Some results are displayed in table 5 .

Only for G_{2} is it trivial to derive the general result. In this case:

$$
\begin{equation*}
P S_{1} P^{-1}\left(\nu_{1} \nu_{2}\right)=P P^{-1}\left(\nu_{1} \nu_{2}\right)=\left(\nu_{1} \nu_{2}\right) \tag{5.10}
\end{equation*}
$$

and

$$
\begin{align*}
P S_{2} P^{-1}\left(\nu_{1} \nu_{2}\right) & =P S_{\left(e_{1}-2 e_{2}+e_{3}\right) / 3}\left(\frac{2}{3} \nu_{1}-\frac{1}{3} \nu_{2},-\frac{1}{3} \nu_{1}+\frac{2}{3} \nu_{2},-\frac{1}{3} \nu_{1}-\frac{1}{3} \nu_{2}\right) \\
& =P\left(\frac{1}{3} \nu_{1}+\frac{1}{3} \nu_{2}, \frac{1}{3} \nu_{1}-\frac{2}{3} \nu_{2},-\frac{2}{3} \nu_{1}+\frac{1}{3} \nu_{2}\right) \\
& =\left(\nu_{1}, \nu_{1}-\nu_{2}\right) \tag{5.11}
\end{align*}
$$

where use has been made of (3.1) and (3.2) with $\boldsymbol{p}=(1,1,1)$, and of (2.8). This merely corresponds to the fact that the highest weights of the mutually contragredient representations $\left\{\nu_{1}, \nu_{2}\right\}$ and $\left\{\nu_{1}, \nu_{1}-\nu_{2}\right\}$ of $\mathrm{SU}(3)$ are G_{2}-equivalent. It is obviously true

Table 5.

G-dominant vector ν_{G} in Λ	Set of H-dominant vectors $P S P^{-1} \nu_{\mathrm{G}}$ for $S \in \mathrm{~W}_{\mathrm{G}}$ which are G-equivalent to ν_{G}						
$\mathrm{G}=\mathrm{G}_{2}$	$\mathrm{H}=\mathrm{SU}(3)$						
ν_{1}, ν_{2}	ν_{1}, ν_{2}	$\nu_{1}, \nu_{1}-\nu_{2}$					
$G=F_{4}$	$\mathrm{H}=\mathrm{SO}(9)$						
0	0						
1	1	Δ					
1^{2}	1^{2}						
- $; 1$	$\Delta ; 1$	1^{3}					
2	2	1^{4}					
21	21	$\Delta ; 1^{2}$					
21^{2}	21^{2}						
2^{2}	2^{2}						
- $\mathbf{2}^{2}$	$\Delta ; 2$	21^{3}	$\Delta ; 1^{3}$				
- 21	- $; 21$	$2^{2} 1$					
3	3	$\Delta ; 1^{4}$					
31	31	$2^{2} 1^{2}$					
31^{2}	31^{2}	- $; 21^{2}$					
31^{3}	31^{3}	23					
32	32	$\Delta ; 2^{2}$					
321	321						
3^{2}	3^{2}						
$\mathrm{G}=\mathrm{E}_{6}$		$\mathrm{H}=\mathrm{SU}$	$\otimes \mathrm{SU}(6)$				
0:0	0:0						
1:1	1:1	$0: 1^{4}$					
1:1 ${ }^{5}$	$1: 1^{5}$	0:1 ${ }^{2}$					
2:0	2:0	$1: 1^{3}$	0:214				
2:1 ${ }^{2}$	$2: 1^{2}$	$1: 21^{3}$	0:2	$0: 2^{3} 1^{2}$			
$2: 1^{4}$	$2: 1^{4}$	$1: 2^{2} 1^{3}$	$0: 21^{2}$	$0: 2^{5}$			
		$0: 2^{4}$					
$2: 21^{4}$	$2: 21^{4}$	$1: 21$	$1: 2^{4} 1$	$0: 2^{2} 1^{2}$			
$2: 2^{5}$	$2: 2^{5}$	0: 2^{2}					
3:1	3:1	2:21 ${ }^{2}$	$1: 31^{4}$	$1: 2^{3} 1$	$0: 32^{3} 1$		
3:1 1^{3}	3:1 ${ }^{3}$	$2: 2^{2} 1^{2}$	$1: 32^{2} 1^{2}$	$0: 31^{3}$	$0: 2^{3}$	$0: 3^{2} 2^{3}$	
3:1 ${ }^{5}$	$3: 1^{5}$	$2: 2^{3} 1^{2}$	$1: 2^{2}{ }^{1}$	$1: 32{ }^{4}$	$0: 321^{3}$		
3:21	3:21	2:31 ${ }^{3}$	1:3	$1: 32{ }^{3}$	$0: 3^{3} 21$		
$3: 21^{3}$	$3: 21^{3}$	2:321 ${ }^{3}$	$2: 2^{4}$	1:31 ${ }^{2}$	$1: 3^{2} 2^{2} 1$	$0: 32^{2} 1$	$0: 3^{4} 2$
$3: 2^{2} 1^{3}$	$3: 2^{2} 1^{3}$	$2: 2^{2}$	$2: 32{ }^{3} 1$	$1: 321^{2}$	$1: 33^{3} 2^{2}$	0:31	$0: 3^{2} 21^{2}$
$3: 2^{4} 1$	$3: 2^{4} 1$	2:32 ${ }^{3}$	$1: 31^{3}$	$1: 3^{5}$	0:321		
3:3	3:3	$0: 3^{4}$					
3:31 ${ }^{4}$	3:31 ${ }^{4}$	2:31	$1: 3^{4} 1$	$0: 3^{2} 2^{2}$			
3:32 ${ }^{4}$	$3: 32^{4}$	$2: 3{ }^{4} 2$	1:32	$0: 3^{2} 1^{2}$			
3:3 ${ }^{5}$	$3: 3^{5}$	$0: 3^{2}$					

Table 5-continued

G-dominant vector $\boldsymbol{\nu}_{G}$ in Λ	Set of H-dominant vectors $P S P^{-1} \boldsymbol{\nu}_{\mathrm{G}}$ for $S \in \mathrm{~W}_{\mathrm{G}}$ which are G-equivalent to ν_{G}					
$\mathrm{G}=\mathrm{E}_{7}$	$\mathrm{H}=\mathrm{SU}(8)$					
0	0					
1^{2}	1^{2}	1^{6}				
2	2	2^{7}				
21^{2}	21^{2}	$2^{2} 1^{4}$	$2^{5} 1^{2}$			
21^{6}	21^{6}	1^{4}				
2^{2}	2^{2}	2^{6}				
31	31	$321{ }^{3}$	$3^{2} 21{ }^{4}$	$32^{4} 1$	$2^{3} 2^{3} 1$	$3^{6} 2$
31^{3}	31^{3}	$32^{2} 1^{3}$	2^{3}	$3^{2} 2^{3} 1$	2^{5}	$3^{4} 2^{3}$
31^{5}	31^{5}	$32^{3} 1^{3}$	$2^{3} 1^{2}$	$3^{2} 2^{5}$		
321	321	$3^{2} 1^{4}$	$3^{2} 2^{4}$	$3^{5} 21$		
321^{5}	321^{5}	$32^{5} 1$	21^{4}	$2^{2} 1^{2}$	$2^{4} 1^{2}$	
3^{2}	3^{2}	3^{6}				
42^{6}	42^{6}	2^{4}				
$\mathrm{G}=\mathrm{E}_{8}$		$\mathrm{H}=\mathrm{SO}(1$				
0	0					
1^{2}	1^{2}	$\left.{ }^{(\Delta)}\right)_{+}$				
2	2	$(\boldsymbol{\Delta} ; 1)_{-}$	1^{4}			
21^{2}	21^{2}	$\left(\boldsymbol{\Delta} ; 1^{2}\right)_{+}$	1^{6}			
2^{2}	2^{2}	$\left(1^{8}\right)_{+}$				
$(\boldsymbol{\Delta} ; 2)_{+}$	$(\boldsymbol{\Delta} ; 2)_{+}$	21^{4}	$\left(\boldsymbol{\Delta}^{2} ; 1^{3}\right)_{-}$	$\left(1^{8}\right)$		
31	31	21^{6}	$2^{2} 1^{2}$	($\mathbf{\Delta} ; 21$)	$\left(\boldsymbol{\Delta} ; 1^{4}\right)_{+}$	
31^{3}	31^{3}	$\left(\mathbf{\Delta} ; 21^{2}\right)_{+}$	2^{3}	$2^{2} 1^{4}{ }^{6}$	$\left(\boldsymbol{\Delta} ; 1^{5}\right)$	
321	321	$\left(\boldsymbol{\Delta} ; 2^{2}\right)_{+}$	$\left(2^{2} 1^{6}\right)_{+}$	$\left(\boldsymbol{\Delta} ; 1^{6}\right)_{+}$		
3^{2}	3^{2}	$\left(\mathbf{\Delta} ; 1^{8}\right)_{+}$				

in this case that the weight multiplicities of G_{2} derived earlier (King and Al-Qubanchi 1978) using (5.8) with $c=1$ are entirely consistent with (5.8) in the case $c=2$ since the branching rule from G_{2} to $\mathrm{SU}(3)$ involves mutually contragredient pairs of representations along with self-contragredient representations of $\mathrm{SU}(3)$.

However, in other cases the constraints (5.8) with $c \neq 1$ are much more important. To see this it is instructive to consider the problem in the case when $G=E_{8}$ and $\mathrm{H}=\mathrm{SO}(16)$. The defining representation of E_{8} is the adjoint representation $\left(1^{2}\right)$. The weights of this representation are precisely the roots themselves, each with multiplicity 1 , together with the null vector whose multiplicity is the rank, 8 , of E_{8}. All the roots of E_{8} are necessarily E_{8}-equivalent, but as indicated in table 5 they include two $\mathrm{SO}(16)$ dominant weights $\left(1^{2}\right)$ and $(\boldsymbol{\Delta})_{+}$which are not $\mathrm{SO}(16)$-equivalent. This implies, after a dimensionality check to ensure that all weights have been included, that on restriction from E_{8} to $\mathrm{SO}(16)$:

$$
\mathrm{E}_{8} \rightarrow \mathrm{SO}(16) \quad\left(1^{2}\right) \rightarrow\left[1^{2}\right]+[\Delta]_{+} .
$$

The relevant portion of the weight multiplicity table (King and Plunkett 1976) of
$\mathrm{SO}(16)$ takes the form:

	(0)	$\left(1^{2}\right)$	$(\boldsymbol{\Delta})_{+}$
$\left[1^{2}\right]$	8	1	
$[\boldsymbol{\Delta}]_{+}$			1
	8	1	1

This confirms the weight multiplicities of E_{8} :

$$
M_{(0)}^{\left(1^{2}\right)}=8 \quad M_{\left(1^{2}\right)}^{\left(1^{2}\right)}=M_{(\mathbf{\Delta})+}^{\left(1^{2}\right)}=1 .
$$

Similarly in the case of the representation (2) of E_{8} the $\mathrm{SO}(16)$-dominant weights (2), $(\boldsymbol{\Delta} ; 1)_{-}$and $\left(1^{4}\right)$ are E_{8}-equivalent as indicated in table 5 . A dimension check then verifies the validity of the branching rule:

$$
\mathrm{E}_{8} \rightarrow \mathrm{SO}(16) \quad(2) \rightarrow[2]+[\Delta ; 1]+\left[1^{4}\right]
$$

Correspondingly the weight multiplicity table of $\mathrm{SO}(16)$ furnishes the results:

	(0)	(2)	$\left(1^{2}\right)$	$\left(1^{4}\right)$	$(\boldsymbol{\Delta} ; 0)_{+}$	$(\boldsymbol{\Delta} ; 1)_{-}$
$[2]$	7	1	1			
$[\boldsymbol{\Delta} ; 1]$ $\left[1^{4}\right]$	28		6	1	7	1
	35	1	7	1	7	1

so that

$$
\begin{aligned}
& M_{(0)}^{(2)}=35 \\
& M_{\left(1^{(}\right)}^{(2)}=M_{(\mathbf{\Delta} ; 0)_{+}}^{(2)}=7 \\
& M_{(2)}^{(2)}=M_{(\Delta ; 1)-}^{(2)}=M_{\left(1^{4}\right)}^{(2)}=1
\end{aligned}
$$

where the equalities in weight multiplicities of E_{8} are consistent with the requirements of E_{8}-equivalence.

Continuing, the representation $\left(21^{2}\right)$ of E_{8} has as its highest weight $\left(21^{2}\right)$ which is E_{8}-equivalent to the $\mathrm{SO}(16)$-dominant weights $\left(\boldsymbol{\Delta} ; 1^{2}\right)$ and $\left(1^{6}\right)$, so that on restriction:

$$
\mathrm{E}_{8} \rightarrow \mathrm{SO}(16) \quad\left(21^{2}\right) \rightarrow\left[21^{2}\right]+\left[\boldsymbol{\Delta} ; 1^{2}\right]_{+}+\left[1^{6}\right]+\ldots .
$$

The corresponding $\mathrm{SO}(16)$ weight multiplicities are:

	(0)	(2)	$\left(1^{2}\right)$	$\left(21^{2}\right)$	$\left(1^{4}\right)$	$\left(1^{5}\right)$	$(\boldsymbol{\Delta} ; 0)_{+}$	$(\boldsymbol{\Delta} ; 1)_{-}$	$\left(\boldsymbol{\Delta} ; 1^{2}\right)_{+}$
$\left[21^{2}\right]^{2}$	76	7	19	1	3				
$\left[\boldsymbol{\Delta} ; 1^{2}\right]_{+}$	56		15		4	1	28	6	1
$\left[1^{6}\right]$	56	7	34	1	7	1	28	6	1
	132								

Table 6. F_{4} dominant weight multiplicities M_{ν}^{λ}.

	c^{\prime}	1	24	24	96	24	144	96	24	192	288	24	144	288	96	144	192	24
d_{λ}		0	1	1^{2}	$\Delta ; 1$	2	21	21^{2}	2^{2}	A; 2	(; 21	3	31	31^{2}	31^{3}	32	321	3^{2}
1	0	1																
26	1	2	1															
52	1^{2}	4	1	1														
273	- ${ }_{1}$	9	5	2	1													
324	2	12	5	3	1	1												
1053	21	21	14	6	4	1	1											
1274	21^{2}	26	13	10	4	3	1	1										
1053	2^{2}	21	9	8	3	3	1	1	1									
4096	- $; 2$	64	40	24	14	8	4	2	0	1								
8424	$\boldsymbol{\Delta} ; 21$	96	66	40	27	15	10	5	2	3	1							
2652	3	36	24	13	9	5	3	1	0	1	0	1						
10829	31	125	77	56	32	23	12	9	3	4	1	1	1					
19278	31^{2}	174	126	80	57	33	24	13	4	9	3	3	1	1				
19448	31^{3}	176	117	84	54	39	23	16	6	9	3	3	2	1	1			
17901	32	141	106	66	50	29	23	12	6	9	4	3	1	1	0	1		
29172	321	228	147	118	72	58	34	28	14	14	6	5	5	2	2	1	1	
12376	3^{2}	88	53	47	27	24	14	13	8	6	3	3	3	1	1	1	1	1

Table 7. E_{6} dominant weight multiplicities M_{ν}^{λ}.

	c_{ν}	1	72	270	720	432	432	27	27
d_{λ}	λ	0:0	2:0	$2: 21^{4}$	$3: 1^{3}$	3:21	$3: 2^{4} 1$	3:3	$3: 3^{5}$
1	0:0	1							
78	2:0	6	1						
650	2:21 ${ }^{4}$	20	5	1					
2925	3:1 ${ }^{3}$	45	15	4	1				
5824	3:21	64	24	8	2	1			
5824	$3: 2^{4} 1$	64	24	8	2	0	1		
3003	3:3	24	10	4	1	1	0	1	
3003	3:3 ${ }^{5}$	24	10	4	1	0	1	0	1
	c_{ν}	27	216	27	432	1080	270		
d_{λ}	λ	1:1	$2: 1^{4}$	$2: 2^{5}$	3:1	$3: 2^{2} 1^{3}$	$3: 31{ }^{4}$		
27	1:1	1							
351	2:1 ${ }^{4}$	5	1						
351	$2: 2^{5}$	4	1	1					
1728		16	4	0					
7371	$3: 2^{2} 1^{3}$	44	15	5	4	1			
7722	3:31 ${ }^{4}$	40	14	4	5	1	1		
	c_{ν}	27	216	27	432	1080	270		
d_{λ}		$1: 1^{5}$	$2: 1^{2}$	2:2	$3: 1^{5}$	$3: 21^{3}$	$3: 32^{4}$		
27	1:1 ${ }^{5}$	1							
351	2:1 ${ }^{2}$	5	1						
351	2:2	4	1	1					
1728	3:15 ${ }^{5}$	16	4	0	1				
7371	3:21 ${ }^{3}$	44	15	5	4	1			
7722	$3: 32^{4}$	40	14	4	5	1	1		

Clearly:

$$
M_{\left(21^{2}\right)}^{\left(21^{2}\right)}=M_{\left(\mathbf{A}_{1} 1^{2}\right)_{+}}^{\left(21^{2}\right)}=M_{\left(1^{6}\right)}^{\left(21^{2}\right)}=1
$$

as required. However, from (5.4)

$$
M_{(2)}^{\left(21^{2}\right)}=M_{(\mathbf{4} ; 1)-}^{\left(21^{2}\right)}=M_{\left(1^{4}\right)}^{\left(21^{2}\right)}
$$

In order for this relation to be satisfied it is necessary for the representation $[\boldsymbol{\Delta} ; 1]$ - of $\mathrm{SO}(16)$ to appear in the restriction. This gives the additional weights and running totals:

	(0)	(2)	$\left(1^{2}\right)$	$\left(21^{2}\right)$	$\left(1^{4}\right)$	$\left(1^{6}\right)$	$(\boldsymbol{\Delta} ; 0)_{+}$	$(\boldsymbol{\Delta} ; 1)_{-}$
$[\boldsymbol{\Delta} ; 1]_{-}$						7	1	
	132	7	34	1	7	1	35	7

so that

$$
M_{(2)}^{\left(21^{2}\right)}=M_{(\Delta ; 1),}^{\left(21^{2}\right)}=M_{\left(1^{1}\right)}^{\left(21^{2}\right)}=7 .
$$

Now, however, it is required that

$$
M_{\left(1^{2}\right)}^{\left(21^{2}\right)}=M_{(\Delta ; 0)+}^{\left(21^{2}\right)}
$$

which may be satisfied through the inclusion of $\left[1^{2}\right]$ to yield:

	(0)	(2)	$\left(1^{2}\right)$	$\left(21^{2}\right)$	$\left(1^{4}\right)$	$\left(1^{6}\right)$	$(\Delta ; 0)_{+}$	$(\Delta ; 1)_{-}$	$\left(\Delta ; 1^{2}\right)_{+}$
$\left[1^{2}\right]$	8	1							
	140	7	35	1	7	1	35	7	1

so that

$$
M_{\left(1^{2}\right)}^{\left(21^{2}\right)}=M_{(\Delta ; 0)_{+}}^{\left(21^{2}\right)}=7 .
$$

A dimensional check then confirms that the branching rule

$$
\mathrm{E}_{8} \rightarrow \mathrm{SO}(16) \quad\left(21^{2}\right) \rightarrow\left[21^{2}\right]+\left[\mathbf{\Delta} ; 1^{2}\right]_{+}+[\mathbf{\Delta} ; 1]_{-}+\left[1^{6}\right]+\left[1^{2}\right]
$$

is now complete. Hence

$$
M_{(0)}^{\left(21^{2}\right)}=140
$$

completes the evaluation of weight multiplicities of the representation $\left(21^{2}\right)$ of E_{8}.

Table 8. E_{7} dominant weight multiplicities M_{ν}^{λ}.

	c_{ν}	1	126	756	56	2016	126	4032
d_{λ}	λ	0	21^{6}	21^{2}	2^{2}	31^{5}	42^{6}	31
1	0	1						
133	21^{6}	7	1					
1539	21^{2}	27	6	1				
1463	2^{2}	21	5	1	1.			
8645	31^{5}	77	22	5	0	1		
7371	42^{6}	63	17	4	0	1	1	
40755	31	225	69	23	6	5	0	1
	c_{ν}	56	576	1512	4032	1512	56	
d_{λ}	λ	1^{2}	2	321^{5}	31^{3}	321	3^{2}	
56	1^{2}	1						
912	2	6	1					
6480	$321{ }^{5}$	27	6	1				
27664	31^{3}	71	21	5	1			
51072	321	111	21	10	4	1		
24320	3^{2}	45	15	5	1	1	1	

Table 9. E_{8} dominant weight multiplicities $\boldsymbol{M}_{\nu}^{\boldsymbol{\lambda}}$.

	$c_{\boldsymbol{\nu}}$	1	240	2160	6720	240	17280	30240	60480	13440	240	
$\mathbf{d}_{\boldsymbol{\lambda}}$	$\boldsymbol{\lambda}$	$\boldsymbol{\nu}$	0	1^{2}	2	21^{2}	2^{2}	$(\mathbf{\Delta} ; 2)_{+}$	31	31^{3}	321	3^{2}
1	0	1										
248	$\mathbf{1}^{2}$	8	1									
38875	2	35	7	1								
30380	21^{2}	140	35	7	1							
27000	2^{2}	120	29	6	1	1						
147250	$(\mathbf{\Delta} ; 2)_{+}$	370	111	29	6	0	1					
779247	31	1407	455	133	34	7	7	1				
2450240	31^{3}	2960	1056	350	105	27	28	6	1	1		
4096000	321	4480	1624	552	174	56	48	12	2	1	1	
1763125	3^{2}	1765	645	224	74	29	21	6	1	1		

Table 10. Branching multiplicities B_{μ}^{λ} for $E_{8} \rightarrow \mathrm{SO}(16)$.

		1	2	3	3	2	1		7	2	4	1
			4	8	0	7	4		7	4	0	7
	E_{8}		8	7	3	0	7		9	5	9	6
				5	8	0	2		2	0	6	3
					0	0	5		4	2	0	1
	d_{λ}						0		7	4	0	2
										0	0	5
		0	1^{2}	2	21^{2}	2^{2}	$(\boldsymbol{\Delta} ; 2)_{+} 31$			31^{3}	321	3^{2}
1	0	1				1						
120	1^{2}		1		1				1		1	1
128	$(\boldsymbol{\Delta})_{+}$		1			1			1		1	1
135	2			1			1			1		
1920	$(\boldsymbol{\Delta} ; 1)$			1	1		1		1	1	1	
1820	1^{4}			1		1			1	1	1	
7020	21^{2}				1		1		1	1	1	
13312	$\left(\Delta ; 1^{2}\right)_{+}$				1	1			1	1	2	1
8008	1^{6}				1				1		1	1
5304	2^{2}					1				1	1	
6435	$\left(1^{3}\right)_{+}$					1					1	1
15360	$(\Delta ; 2)_{+}$						1		1	1		
60060	21^{4}						1		1	1	1	
56320	$\left(\boldsymbol{\Delta} ; 1^{3}\right)_{-}$						1		1	1	1	
6435	$\left(1^{8}\right)$						1			1		
8925	31								1			
162162	21^{6}								1	1	1	
141372	$2^{2} 1^{2}$								1		1	1
141440	($\boldsymbol{\Delta} ; 21$)								1	1	1	
161280	$\left(\boldsymbol{\Delta} ; 1^{4}\right)_{+}$								1		1	1
176800	31^{3}									1		
670208	$\left(\Delta ; 21^{2}\right)_{+}$									1	1	
89760	2^{3}									1		
716040	$2^{2} 1^{4}$									1	1	
326144	$\left(\Delta ; 1^{5}\right)_{-}$									1		
344064	321										1	
595595	$\left(2^{2} 1^{6}\right)_{+}$										1	1
524160	$\left(\boldsymbol{\Delta} ; 2^{2}\right)_{+}$										1	1
465920	$\left(\Delta ; 1^{6}\right)_{+}$										1	
129675	3^{2}											1
183040	$\left(\Delta ; 1^{8}\right)_{+}$											1

In this way branching multiplicity and weight multiplicity tables may be built up simultaneously with one being used to check the other. Both the branching multiplicities for $\mathrm{G}_{2} \rightarrow \mathrm{SU}(3)$ and the weight multiplicities of G_{2} have been given earlier (King and Al-Qubanchi 1978) whilst the branching multiplicities for $\mathrm{F}_{4} \rightarrow \mathrm{SO}(9), \mathrm{E}_{6} \rightarrow$ $\mathrm{SU}(2) \otimes \mathrm{SU}(6)$, and $\mathrm{E}_{7} \rightarrow \mathrm{SU}(8)$ have been extensively tabulated by Wybourne and Bowick (1977). The weight multiplicity table of F_{4} due to Veldkamp (1970) is extended to give the results of table 6 , whilst the weight multiplicities of E_{6}, E_{7} and E_{8} are given in tables 7, 8 and 9. It should be pointed out that the last table is not as extensive as the remarkable table produced by Freudenthal (1954b) for E_{8} as an illustration of the power of his recurrence relation (Freudenthal 1954a) for calculating weight multiplicities. However, table 9 serves to present the results in the notation described in I, whilst table 10 considerably extends the list of branching multiplicities for $\mathrm{E}_{8} \rightarrow \mathrm{SO}(16)$ given by Freudenthal (1956).

References

Al-Qubanchi A H A 1978 PhD Thesis Southampton University
Dynkin E B 1962 Am. Math. Soc. Transl. Series 9328-469
Freudenthal H 1954a Indag. Math. 16 369-76

- 1954b Indag. Math. 16 487-91
-_ 1956 Indag. Math. 18 511-4
King R C and Al-Qubanchi A H A 1978 J. Phys. A: Math. Gen. 11 1491-9
_- 1981 J. Phys. A: Math. Gen. 14 15-49
King R C and Plunkett S P O 1976 J. Phys. A: Math. Gen. 9 863-87
Sharp R T and Lam C S 1969 J. Math. Phys. 10 2033-8
Veldkamp F D 1970 J. Algebra 16 326-39
Weyl H 1926 Math. Z. 24 377-95
Wybourne B G and Bowick M J 1977 Aust. J. Phys. 30 259-86

[^0]: \dagger Permanent address: Department of Physics and Mathematics, College of Education, University of Basrah, Basrah, Iraq.

