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Abstract. The Weyl group, Wg, of each exceptional simple Lie group G, is described in
detail. Its structure is defined in terms of its coset decomposition with respect to the Weyl
group, Wy, of a classical semi-simple Lie group, H, embedded naturally in G. The concepts
of G-dominance and G-equivalence are defined and used to determine, from the character
formula of Weyl, the branching rule associated with the restriction of group elements from
G to H. The Weyl group Wg is used further to impose constraints on both the branching
multiplicities for G-» H and the weight multiplicities of G. These constraints are used to
evaluate the weight multiplicities of F4, Es, E, and Eg together with the branching
multiplicities for Eg-» SO(16).

1. Introduction

As stressed by Wybourne and Bowick (1977) a number of recent applications of the
exceptional Lie groups G, F., Es, E; and Eg to physics have made it necessary to
establish results on the irreducible representations of these groups analogous to those
appropriate to the classical Lie groups SU(k +1), SO(2k +1), Sp(2k) and SO(2k).
Amongst other requirements for these applications are the evaluation of weight and
branching multiplicities. In this paper itis shown that these two types of multiplicity are
intimately related and that the Weyl symmetry groups of the exceptional Lie groups
have a special role to play in their evaluation.

It is particularly important to make use of the relation between the Weyl symmetry
groups of each exceptional Lie group and a naturally embedded classical Lie subgroup.
Such natural embeddings have been discussed in detail in the preceding paper (King and
Al-Qubanchi 1981), hereafter referred to as I. It has been shown in I that each natural
embedding serves to define a natural labelling scheme for the irreducible represen-
tations of the exceptional Lie groups. In this paper the labelling schemes based on the
embeddings G, > SU(3), F, 2S0(9), Es 2 SU(2) ® SU(6), E; 2 SU(8) and Eg = SO(16)
are used. The advantages of these particular choices are explained in the following
section in which the Weyl group Wg of each exceptional Lie group G is completely
determined from the results of I and expressed in terms of its coset structure with
respect to the Weyl group Wy of the appropriate classical Lie subgroup H of G.

In § 3 the concepts of G-dominance and G-equivalence of vectors are defined in a
notation appropriate to both the specification of weights of irreducible representations
and the labelling of those irreducible representations. These concepts are used in § 4 in
conjunction with the character formula due to Weyl (1926) to determine algorithms for
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the determination of the branching multiplicities associated with the restriction G- H.
These algorithms depend for their implementation solely upon the properties of the
classical Lie group H. Unfortunately they are rather inefficient. The situation is
remedied in § 5 in which it is shown that the G-equivalence of weights of an exceptional
Lie group G imposes strong constraints on both the weight multiplicities of G and
simultaneously the branching multiplicities for G- H. These constraints are such that
both such multiplicities may be calculated in terms of the known weight multiplicities of
the classical Lie group H (King and Plunkett 1976). In this way tabulations of the
weight multiplicities of F4, E¢, E7 and Eg are built up. The work of Wybourne and
Bowick (1977) precludes the necessity of tabulating the branching multiplicities other
than those for the restriction Eg> SO(16). These results complete the task initiated
earlier for the group G, (King and Al-Qubanchi 1978).

2. The Weyl group

The system of roots, 2., of a complex semi-simple Lie algebra g, of rank k, is a set of
vectors r in k -dimensional root space V. This space, as explained in I, may conveniently
be embedded in a Euclidean space W of dimension d with d = k. The orthogonal
complement, V-, of V in W is spanned by certain vectors p belonging to a comple-
mentary set I',. These vectors satisfy the constraint ». p =0 for all root vectors r. The
basis vectors of W are the mutually orthonormal vectors ¢; with i =1,2,...,d. They
are defined so that the jth component of e; is given by (e;); = 8, An ordering of vectors
in W may be introduced such that v is higher than w, signified by v > w, if and only if the
first non-vanishing component of v —w with respect to the basis defined by e,
i=1,2,...,d,is positive.

A root r is positive if ¥ >0, where all the components of 0 are zero. Furthermore, a
root is said to be simple if it is positive and may not be written as the sum of two positive
roots. Such simple roots were introduced by Dynkin (1962, p 432), who proved that
each complex semi-simple Lie algebra g is characterised by its system, Il,, of simple
roots.

As pointed out in I, there is a consensus of opinion regarding the specification of the
roots, Z,, and the simple roots, I1,, of each of the simple classical Lie algebras of rank
k: Ay, By, Cp and D, associated with the classical groups SU(k + 1), SO(2k + 1), Sp(2k)
and SO(2k) respectively. No such consensus has emerged in the case of the simple
exceptional Lie algebras G,, F4, Es, E; and Eg associated with the exceptional groups
denoted by the same symbols. This is primarily because the natural way of constructing
the root system of an exceptional simple Lie algebra g, of rank k, depends upon an
embeddingin g of a classical semi-simple Lie subalgebra / of the same rank k. Foreach
g there may exist more than one such h, leading therefore to the great variety of root
systems for g appearing in the literature. This has been discussed in detail in I. For
reasons which will become clear the labelling schemes adhered to in this paper are those
based on the embeddings: G2 > A,, Fs5Bs, Es® A+ As, E; 2 A, and Es > Dg. The
corresponding root systems, along with those of the classical simple algebras, are
displayed in table 1. For each algebra the important quantity

R=3Yr (2.1)

r>=0

is also given, as well as the vectors p which define V.
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The Weyl group, Wg, of a real compact semi-simple Lie group G is the symmetry
group of the root diagram of the associated complex semi-simple Lie algebra g. Itis the
group generated by reflections in the hyperplanes perpendicular to the roots. The
action of such a reflection S, on an arbitrary vector w in the Euclidean space W,
containing the root space, is defined by:

Sow->8Sw=w-2[(w.r)/(r.r)r (2.2)

Clearly S_,w = S,w and more generally S,,w = S,w for any a # 0. These reflections
preserve both V* and V in the sense that for all pe V™, S,p =p by virtue of the
constraint p.r =0, whilst if v € V so that v.p=0 for all pe V" then S,v € V since
(Sv).p=0Oforallpe V",
In the case of the roots of the classical Lie algebras:
Seime, W= Ww—(w;~w,)(e;—e)
Seve,iWo>w—(w;+w;)(e +e)

Se,:w—>w—2we,

so that for v = (v, v3,...,04)€ V:
Seiwe, (vt v )20y ) (2.3)
Seve, (ot v )=y L) (2.4)
Set(oovi )2 -l (2.5)

where the components of the vector v indicated by dots are unchanged by the reflection.

It is then easy to identify, for each of the classical simple Lie groups, the cor-
responding Weyl groups formed by closure under successive application of the relevant
transformations selected from (2.3), (2.4) and (2.5). In the case of SU(k + 1) only (2.3)
is relevant and Wgyk+1) is the group, of order (k +1)!, of all permutations of the
components of v. For SO(2k +1) and Sp(2k) (2.3), (2.4) and (2.5) are all relevant. The
Weyl groups Wsoe+1y and Wgp2k) are identical, each being the group, of order 2"k !, of
all permutations and independent sign changes of the components of v. On the other
hand for SO(2k), (2.5) is not relevant and Wsouy, is the group, of order 27 'k1,
consisting of all permutations and an even number of independent sign changes of the
components of v.

For each exceptional simple Lie group G one advantage of using a natural labelling
scheme for the roots of the corresponding exceptional simple Lie algebra g, as described
in I, now becomes apparent. Such a scheme makes it clear that the root system, =, of g
contains the root system, X, of a classical semi-simple Lie algebra h, where A
corresponds to a classical subgroup H of G. It follows that Wg contains Wy as a
subgroup, and it is convenient to construct Wg by making use of its coset decomposition
with respect to Wy, namely:

Wa= U Was, (2.6)
bz
where ¢ =|Wg|/|Wy| and S, for y=1,2,..., c are a set of coset representatives such

that each element S of W can be written in the form TS, for some element T in Wy and
some coset representative S,. It is at this stage that the criterion used in selecting from
the set of all natural labelling schemes the particular ones of table 1 becomes apparent.
This criterion is that of the minimisation of the index ¢. The embeddings G, >SU(3),
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F,s>80(9), E¢=>SU(2)®SU(6), E;>SU(8) and Eg>SO(16) correspond to the
minimal possible values of ¢ in (2.6), namely ¢ =2, 3, 36, 72 and 135 respectively.

To determine suitable coset representatives S, it is necessary to consider the Weyl
reflections associated with those roots of g which are not roots of 4. In the case of G»,
for example, the roots additional to those of A, define reflections of the form:

1
Se—ei-e3 W= W— 2w, —w; —wi)3(2e; —e; —ey).

The space V™ is spanned by p =e; +e,+e3, so that for v = (vy, vs, v3) in V, v.p=
vi+va+v3=0. The use of this constraint gives:

S(22i~ei—ek)/3 vy, Uy U) > (— Uiy, ks ‘Uj)- (2.7)

Making use of the known structure of the subgroup Wgy ) it follows that W, is the
group of order 12, consisting of all permutations and simultaneous sign changes of all
three components of v. Thus the index of Wsys) in W, is 2, as claimed, and

Wa, =Wsu@S1 0 Wy,

where the coset representatives S; and S, may be chosen to be the identity element:
S1:(v1, v2, v3) > (v, 2, 3)

and the reflection:
82=S(e;~2¢s+e3/3: (U1, U2, V3) > (—v3, =02, —v1). (2.8)

Similarly, in the case of F,4, Eg, E; and Eg the roots additional to those of the classical
subalgebras B4, A+ As, A; and Dg, respectively, define reflections of the form:

1
Ssioe2i W>W— (Z U'iwi)Z > gi€;
i i

with o;=F1lforj=1,2,...,d. Thus for any vector v in V
S:lﬂjej/zi(. LU )—>< N %(‘U,'—U'i z a'jvj) .. ) (29)
j#E

where now the components of the vector v indicated by dots transform in the same way
as the particular component v; for which the transformation has been given explicitly.
The reflection (2.9) may be simplified where appropriate by use of the constraints
v.p =0. In order to construct explicitly the corresponding Weyl groups it is necessary
to establish the result of repeated application of (2.9) together with (2.3), (2.4) and (2.5)
as appropriate until closure is obtained. This has been carried out explicitly elsewhere
(Al-Qubanchi 1978) and confirms that the Weyl groups of F,, E¢, E; and Eg are groups
of order 3(2*41), 36(216!), 72(8!) and 135(278!). Convenient sets of coset represen-
tatives appropriate to subgroups consisting of the Weyl groups of SO(9),
SU((2) ® SU(6), SU(7) and SO(16) are given in table 2, in which the Weyl group W of
each simple Lie group G is displayed.

This table provides not only an explicit statement of the action of each Weyl group
element § on an arbitrary vector v in the root space V, but also the parity, ns, of this
element. The parity ngs is +1 or —1 according to whether § is generated by an even or an
odd number of reflections of the type (2.2).
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3. G-dominance

Given a vector v in the root space V of some semi-simple Lie algebra g associated with
a Lie group G there exists a set of vectors {Sv: § € Wg} each of which may be said to be
G-equivalent to v, and a unique G-dominant vector v which is defined to be the highest
vector of this set. Using the information in table 2 it is a straightforward task to
construct, from a given vector v, the corresponding class of G-equivalent vectors and to
identify the G-dominant vector vg.

For example the vector v =(0, 1, -3,2) in the root space V of A; is SU(4)-
equivalent to others such as (1,0,-3,2), (-3,2,1,0), formed by permuting the
components of v. The corresponding SU(4)-dominant vector, vsuw, is clearly
(2,1,0,—3). Similarly the vector v =(—4, 2,2, 1, 3,4, -2, —2) in the root space of Egis
Eg-equivalent to others such as (4,2,2,1,3,4,2,-2), 4,4,3,2,2,2,2,-1)...
formed by permuting the components of v and by changing the signs of these
components in pairs in accordance with (2.3) and (2.4). Still other vectors such as
(-5,3,3,0,2,3,-3,-3),(%,3,3,3,2 3, 3.0, ... may be shown to be Eg-equivalent to v
through the additional application of (2.9). However, the identification of vg, is by no
means trivial.

In order to facilitate this and similar identifications it should be pointed out that the
specific selection of coset representatives S, made in table 2 for each exceptional Lie
group G has been made in such a way that if v is G-dominant then S,v is H-dominant
where H is the appropriate classical Lie subgroup of G. Conversely given that v is
H-dominant it is possible to use table 2 to identify a particular coset representative S,
such that there exists T in the Weyl group Wy of H with the property that TS,v is
G-dominant. The action of the required S, on each possible H-dominant vector v for
each of the exceptional simple Lie groups G is given in table 3. This may be used, as in
the following example, to identify G-dominant vectors. The SO(16)-dominant vector
equivalent to (—4,2,2,1,3,4,-2,-2) is vsoue=104,4,3,2,2,2,2,-1) for which
UVat U3+ Us+ Vet U7—Vg= 16>l)1 24?-1)2+U3+U4_'1)5-UG“D7—08:2. It follows
that the required vector, S,vsoas (from which the corresponding Eg-dominant
vector vgs may be found through the application of some element Tof Wgos)), is
the vector whose components correspond to case (ii) of the entries appropriate
to Eg in table 3, that is (7,1,0,-1,-1,-1,—-1,2). Applying permutations and
sign changes of pairs of components then gives the required Eg-dominant vector
ve,=(7,2,1,1,1,1,1,0).

The necessary and sufficient conditions for a vector v to be G-dominant are implicit
in table 3. Conditions appropriate to the classical groups have been included for
completeness by identifying H with G. The conditions appropriate to each exceptional
group G are those specified by case (i) of the entries tabulated, together with the
conditions for H-dominance, which are also given.

As explained in I it is useful in developing labels for the irreducible representations
of a Lie group G, associated with a semi-simple Lie algebra of rank k, to project each
labelling, G-dominant highest weight vector in the k-dimensional root space V of W
onto a vector in another k -dimensional subspace A of W. This space A is spanned by all
the vectorse; withi =1, 2, ..., d except those with / = m, where in the notation of I, the
values of m are defined so that each vector p of V~ takes the form p=
e;te. +...+e.;.1+e, Theordering of the basis vectors e; of W is then such that the
projection is onto vectors whose last (d — k)-components, with respect to this ordering,
are zero. Such a projection, P, may be applied to any vector v of V to give a vector A of
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A in accordance with the prescription:

Pio>A=v— ) 0U.p . (3.1)

peV*t

The inverse relationship is:

PhAsp=A~ X [.p)/(p.p)l; (3.2)
peV
the consequences of these relations are spelled out in table 4.

It should be stressed that the ordering relations on vectors in W, involving the first
non-vanishing difference of components, is applicable directly to vectors v in V but
only indirectly to vectors A in A. Thus for any two vectors A and u in A, A > u if and
onlyif P"'A > P~'u. For example in the case of the group SU(3) for which the space V*
is spanned by p=e;+e,+e3;=(111) the vectors A=(100) and u (11 0) in A are
suchthat (100)>(110)since P 'A=G-3-Dand P 'u =(33-%), whilst -3-9 >
G3-3% by virtue of the lexicographic ordermg in V.

In the same way A and g are defined to be G-equivalent if and only if P'A and
P~'u are G-equivalent. Moreover A is G-dominant if and only if P"'A is G-dominant.
This implies that the G-dominance of vectors A in A should be tested through the use of
(3.2). Rather than do this from first principles whenever required the necessary and
sufficient conditions for a vector A in A to be G-dominant have been included in table 4.
Finally in this table the further conditions on the components of such a G-dominant
vector Ag in A for it to label an irreducible representation of G have been displayed.
They may be obtained from I. As implied in this previous paper, the highest weight,
MG, of the irreducible representation of G labelled by A, is the G-dominant vector in
V defined by

Ms=P 'Ac. (3.3)

4. Branching rules

The character of the irreducible representation Ag of the semi-simple Lie group G
having highest weight Mg is given, in the class specified by parameters ¢ =
(b1, &2, ... dg), by the formula due to Weyl 1926):

x'o(p) = Z ns expliS(Re +Mo) . 8]/ ZN ns exp(iSRG . ¢) (4.1)
where the summations are carried out over all elements § of the Weyl group W and Rg
is half the sum of the positive roots of the corresponding Lie algebra g. The G-dominant
vectors Rg and Mg lie in the space V which is embedded in W, The vector ¢ lies in the
same space V, orthogonal where appropriate to V=,

The branching rules arising from the restriction of group elements of one of the
exceptional Lie groups G to its naturally embedded classical Lie subgroup H may be
established in many ways. One way involves recognising that the Weyl group Wy is, for
such an embedding, a subgroup of Wg and that the class parameters of H coincide with
those of G. Thus making use of the coset representatives S, defined in § 2 it follows
that:

o) = 3 ns, T nrexpliTS,(Ro+Mo).¢1/ ¥ ns, T nrexpliTS,Ro. ).
y=1 TeWy y=1 TeWy
4.2)
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Dividing the numerator and denominator by

Y, nrexp(iTRu. &)
TeWy
allows this character (4.2) to be written as a quotient of sums of characters of H. To be
precise:

(v)

xte Z s, X ‘ﬂ)w/z ns,x " (P), (4.3)

where oy’ and 74}’ label the irreducible representations of H having highest weights
S,(Rg+Mg)— Ry and S, Rs — Ry respectively, i.e.

oyl =P(S,(Rs+Mg)—Ry) (4.4)
and
7 =P(S,Rc—Ry). (4.5)

It should be stressed that the particular choice made of coset representatives, S,
whose action is defined in table 3 is now highly advantageous since this action on the
G-dominant vectors R+ Mg and Mg is guaranteed to give H-dominant vectors.
Moreover the vectors S,(Rg+Mg)— Ry and S,Rg— Ry are also H-dominant as
required for o and 7(}?), defined by (4.4) and (4.5), to be irreducible representation
labels as they stand, without modification.

Thus making use of Rg and Ry as given in table 1, the action of S, as defined in table
2, and the projection P defined in table 4 it is possible to write out the expansion (4.3)
explicitly for each exceptional Lie group G.

This has already been done (King and Al-Qubanchi 1978) for G, and yields in the

present notation:
X" @) = (M) = x T ) () - x ) (4.6)

where the brackets ( ) and { } serve to distinguish between the characters of G, and its
subgroup SU(3).
Similarly in the case of F, the same formula (4.3) gives

XM (@) = [yt ()

B A A A DTS A, A=A DTS~ AT A A FE I A A A )+ (b)

(3 A+ A=A D+ L E A+ 25— A+ A )+ 1A = A+ A, +A )+ LI —A,—A5=A )]
+X 23T A, 12342123421234(¢)}

X 1/{x%(d)—xZ2 7 () + )} (4.7)

where now the brackets ( )and[ ]serve to distinguish between the characters of F, and
its subgroup SO(9).

Formulae similar to (4.6) and (4.7) may be written down for E¢, E; and Eg but they
contain in the numerator and denominator ¢ terms where ¢ =36, 72 and 135 respec-
tively. Nonetheless they do serve to define exceptional group characters in terms of
classical group characters, and in prmc1p1e they may be used to determine the

corresponding branching multiplicities BAS, appropriate to the restriction from G to H,
which are defined by the expansion:

()= Z Busx (o). (4.8)
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By means of a stroke of good fortune in the case of G,, which does not appear to
apply to the remaining exceptional Lie groups, the quotient (4.6) may be evaluated
explicitly (King and Al-Qubanchi 1978) in the form (4.8) to yield the branching
multiplicities for the restriction from G; to SU(3).

In general these multiplicities may be found by systematically building up the
numerator of (4.3), working from the highest representation oy downwards, by
multiplying the denominator of (4.3) by characters x“*(¢) chosen so as to give the
required terms, after appropriate cancellations have been made involving the factors
7s,. This procedure involves only a knowledge of the Kronecker product multiplicities
of the classical group H defined by:

X )x (@) =Y K ix (). (4.9)
PH

Some results for the branching multiplicities for the restriction from F; to SO(9) have
been obtained in this way from (4.7) and given elsewhere (Al-Qubanchi 1978).
However the method is very tedious, comparing most unfavourably with that used by
Wybourne and Bowick (1977) based on the method of elementary multiplets due to
Sharp and Lam (1969). An alternative approach to this branching rule problem arises,
as shown in the next section, as a by-product of a method of calculating weight
multiplicities.

5. Weight maltiplicities

There is another expansion of the character (4.1) of an irreducible representation Ag
which serves to define the weights m of this representation. This expansion takes the
form:

x*(@) =2 M, explim . &), (5.1)

where the coeflicient MAS is the multiplicity of the weight m in the representation Ag.

This expansion may be effected in many ways. For the classical Lie groups an
extensive tabulation of weight multiplicities already exists (King and Plunkett 1976).
For the exceptional Lie groups G it is convenient to make use of the branching rule,
(4.8), associated with the restriction from G to a classical Lie subgroup H, together with
the character formula (5.1) appropriate to H:

X)) =) M+ explim . ). (5.2)

m

Comparison with (5.1) then yields:

Mo =Y BloMbEn, (5.3)
HH

If the branching multiplicities are known as well as the weight multiplicities of the
classical group H this provides a very simple way of determining the weights and the
weight multiplicities of the exceptional group G. It should be noted that (5.3) implies
that every weight of a representation of G is necessarily the weight of some represen-
tation of H. This is a consequence of the selection of H as a subgroup embedded
naturally in G which allows the class parameters for G and H in (5.1) and (5.2) to be



66 R CKing and A H A Al-Qubanchi

identified. It is now possible to exploit the fact that the Weyl group Wy is a subgroup
of Wc,.

The dependence of the character formula (4.1) on the elements S of the Weyl group
W is such that, on expanding in the form (5.1), it is clear that

M3is =Mie (5.4)

for all § in Wg. In the case for which S is a coset representative, S, of Wg with respect
to Wy this yields, through (5.3), the non-trivial constraints:

Mhe = M$S, =Y. BhoMbn, (5.5)
[15%]
fory=1,2,...,c, where M?fm has a priori no connection with M 5.

Given any particular weight m it is only necessary by virtue of (5.4) to evaluate the
multiplicity of the corresponding G-dominant weight mg. Then (5.5) gives:

Mug =Y BusMSh., (5.6)
HH

for all coset representatives §,, which, as pointed out in § 3, have been chosen so as to
ensure that S,mg is H-dominant. This relationship between dominant weight multi-
plicities of G and those of H, involving the branching multiplicities, serves as a powerful
weapon in tackling the problems of evaluating both weight multiplicities of G and the
branching multiplicities.

Since the weights mg and S,mg appearing in (5.6) are G and H-dominant respec-
tively they are necessarily highest weights of some irreducible representations of G and
H: in fact those labelled by v = Pmg and of; = PS, g, where in the labelling scheme
adopted here, the projection operator P is the same for both the groups G and H. Itis
convenient, without it is hoped any great risk of confusion, to define:

My =Mhr, and  Min, =ME, (5.7)
so that
Mg =Y BusMGs, fory=1,2,...,¢ (5.8)
1351
where
ali=PS,P lve. (5.9)

Thus in order to maximise the benefit obtained from (5.8) it is useful to tabulate for each
representation label »g the complete list of representation labels f; defined by (5.9).
Unfortunately P and S, do not in general commute so it is necessary to make use of both
table 2, defining the action of S, and table 4 defining that of P, in constructing such a list.
Some results are displayed in table 5.

Only for G is it trivial to derive the general result. In this case:

PSP (v1v2) = PP (vyv2) = (v172) (5.10)
and
PSzP—l(Vﬂ/z) = PS(e1-2e2+e3)/3 (%Vl —%Vz, ‘"%‘Zﬁ + %Vz, _%Vl - %Vz)
= PGu1+3v2, 501~ 5v2, —5v1 +302)

=(v1, v1—v2) (5.11)
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where use has been made of (3.1) and (3.2) with p =(1, 1, 1), and of (2.8). This merely
corresponds to the fact that the highest weights of the mutually contragredient
representations {v1, vo} and {v1, 1 — v} of SU(3) are G,-equivalent. Itisobviously true

Table 5.
G-dominant
vector vg Set of H-dominant vectors PSP~ v
in A for § € W which are G-equivalent to vg
G=G, H=SU(@3)
vy, Vp vy, Vn v, V1 V2
G=F, H=S80(9)
0
1 1 A
1? 1?
Al Al 1?
2 2 14
21 21 A;1?
212 212
22 2?
A;2 A;2 213 A;1°
A;21 A;21 2°1
3 3 A;1*
31 31 2712
312 312 A; 212
31° 313 28
32 32 A;2°
321 321
32 3?
G=F, H=SU{2)® SU(6)
0:0 0:0
1:1 1:1 0:1*
1:1° 1:1° 0:1?
2:0 2:0 1:1° 0:21*
2:17 2:12 1:21° 0:2 0:231?
2:1* 2:1% 1:2%13 0:212 0:2°
2:2 2:2 0:2*
2:21° 2:21% 1:21 1:2%1 0:221%
2:2° 2:2° 0:22
3:1 3:1 2:217 1:314 1:2%1 0:32%1
3:1° 3:1? 2:2%12 1:32%1>  0:31° 0:2? 0:3%2°
3:1° 3:1° 2:2%17 1:2%1 1:32¢ 0:321°
3:21 3:21 2:313 1:3 1:32° 0:3%21
3:21° 3:213 2:321% 2.2° 1:317 1:3%221 0:32%1 0:3%2
3:2%13 3:2%1° 2:2° 2:32%1 1:3217 1:3%22 0:31 0:3%212
3:2%1 3:2%1 2:32° 1:31° 1:35 0:321
3:3 3:3 0:3*
3:31° 3:31¢ 2:31 1:3*%1 0:3%2°
3:32¢ 3:32¢ 2:3% 1:32 0:3%12
3:3° 3:3° 0:3%
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G-dominant

vector vg Set of H-dominant vectors PSP~ v

in A for S € W which are G-equivalent to vg

G=E, H=SU(8)

0 0

1? 12 1°

2 2 2’

212 212 2714 2512

21¢ 21° 14

2? 22 2°

31 31 321° 3214 3241 23231 3%
313 31 32%1° 2° 3723 2° 3%2°
31° 318 32°1° 2312 372°

321 321 3714 3724 3°21

321° 321° 32°%1 214 2712 2412
3? 3? 3°

42° 42° 24

G=E; H=50(16)

0 0

1? 1? (A)s

2 2 (A; 1) 14

212 212 a;1%, 18

2? 2 (1%).

(4;2). @4;2).  21* @a; 1. (1%

31 31 21° 2212 (A;21). (A 1h
31? 31° (A;21%, 2° 2714 (A:1°%)
321 321 a; 2%, (@45, (A; 1%,

3? 32 (A; 15,

in this case that the weight multiplicities of G, derived earlier (King and Al-Qubanchi
1978) using (5.8) with ¢ = 1 are entirely consistent with (5.8) in the case ¢ = 2 since the
branching rule from G; to SU(3) involves mutually contragredient pairs of represen-
tations along with self-contragredient representations of SU(3).

However, in other cases the constraints (5.8) with ¢ # 1 are much more important.
To see this it is instructive to consider the problem in the case when G =E; and
H =S0(16). The defining representation of Eg is the adjoint representation (1?). The
weights of this representation are precisely the roots themselves, each with multiplicity
1, together with the null vector whose multiplicity is the rank, 8, of Eg. All the roots of
Eg are necessarily Eg-equivalent, but as indicated in table 5 they include two SO(16)-
dominant weights (1?) and (A). which are not SO(16)-equivalent. This implies, after a
dimensionality check to ensure that all weights have been included, that on restriction
from Eg to SO(16):

Eg->SO(16) (11> [1°]+[AL.

The relevant portion of the weight multiplicity table (King and Plunkett 1976) of



The exceptional Lie groups 69

SO(16) takes the form:

This confirms the weight multiplicities of Eg:
12 (12) (1%
My, =8 Mgz =Ma), =1.
Similarly in the case of the representation (2) of Eg the SO(16)-dominant weights

(2), (A; 1)_ and (1*) are Eg-equivalent as indicated in table 5. A dimension check then
verifies the validity of the branching rule:

Eg—~>SO(16) (2)->[2]+[A; 1]-+[1%].
Correspondingly the weight multiplicity table of SO(16) furnishes the results:

() 2 (1% (1% (A;0).  (A;1)-
[2] 7 1 1
[A; 1] 7 1
1 28 6 1
35 1 7 1 7 1
so that
M =35

2y _ (2) =
M3 =MZo. =7

2y _ (2) _ (2) _
M(z) ‘M(Azl)_ —M(l“) =1

where the equalities in weight multiplicities of Eg are consistent with the requirements
of Eg-equivalence.

Continuing, the representation (21°) of Eg has as its highest weight (21%) which is
Eg-equivalent to the SO(16)-dominant weights (A; 1%) and (1°), so that on restriction:

Eg~>SO(16) (21%) > [21%)+[A; 171, +[1°]+. . ..
The corresponding SO(16) weight multiplicities are:

(©) ) (1% 21h  aH (1% (A0, (A (A1h,
219 76 7 19 1 3
[a; 1%, 28 6 1
[15] 56 15 4 1

132 7 34 1 7 1 28 6 1
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Table 7. E¢ dominant weight multiplicities M3

c 1 72 270 720 432 432 27 27
) 4
da A 0:0 2:0 2:21% 317 3:21 3:2*1 3:3 3:3°
1 0:0 1
78 2:0 6 1
650 2:21% 20 5 1
2925 3:1° 45 15 4 1
5824 3:21 64 24 8 2 1
5824 3:2% 64 24 8 2 0 1
3003 3:3 24 10 4 1 1 1
3003 3:35 24 10 4 1 0 1 0 1
¢ 27 216 27 432 1080 270
14
da A 1:1 2:1* 2:2° 3:1 3:2%1% 3:31%
27 1:1 1
351 2:14 5 1
351 2:2° 4 1 1
1728 3:1 16 4 0 1
7371 3:271° 44 15 5 4 1
7722 3:314 40 14 4 5 1 1
o 27 216 27 432 1080 270
14
d, A 1:1° 2:1% 2:2 3:1° 3:21% 3:32¢
27 1:1° 1
351 2:12 5 1
351 2:2 4 1 1
1728 3:1° 16 4 0 1
7371 3:21° 44 15 5 4 1
7722 3:324 40 14 4 5 1 1
Clearly:

(21%) (212) (212)
M) =M@, =Mis =1
as required. However, from (5.4)
(21%) (21%) (212)
Moy " =Ma; . =Mas .
In order for this relation to be satisfied it is necessary for the representation [A; 1] of
SO(16) to appear in the restriction. This gives the additional weights and running
totals:

) 2) 17 Q1 a1 1% A; 0.  A;D- A1),

[A; 1] 7 1

132 7 34 1 7 1 35 7 1
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so that
MED = M =MED =7
Now, however, it is required that
ME = ME5.
which may be satisfied through the inclusion of [1°] to yield:

(0) ) (1 217 a% 1% (A;0, (A3 (A31D,
1% 8 1
140 7 35 1 7 1 35 7 1

so that ,

M =MRg. =7.
A dimensional check then confirms that the branching rule

Eg->SO(16) (213> [217]+[4; 171 +[A; 11 +[15]+[17]
is now complete. Hence

MG =140

completes the evaluation of weight multiplicities of the representation (21°) of Ej.

Table 8. E, dominant weight multiplicities M2,

c,, 1 126 756 56 2016 126 4032
1 4
da A 0 216 212 2? 31° 428 31
1 0 1
133 21° 7 1
1539 212 27 6 1
1463 22 21 5 1 1
8645 31° 77 22 5 0 1
7371 428 63 17 4 0 1 1
40755 31 225 69 23 6 5 1
s 56 576 1512 4032 1512 56
1 4
dy A 12 2 321° 313 321 3?
56 12 1
912 2 6 1
6480 321° 27 6 1
27664 317 71 21 1
51072 321 111 21 10 4 1

24320 32 45 15 5 1 1 1
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Table 10. Branching multiplicities Bﬁ for Eg>SO(16).

2 3 3 2 1 7 2 4 1
4 8 0 7 4 7 4 0 7
Es 8 7 3 0 7 9 5 9 6
5 8 0 2 2 0 6 3
0 0 5 4 2 0 1
da 0 7 4 0 2
0 0 5
SO(16) A
d, " 12 2 212 2? (A;2), 31 31? 321 3?
1 0 1
120 12 1 1 1 1 1
128 (A). 1 1 1 1 1
135 2 1 1 1
1920 (a; 1) 1 1 1 1 1 1
1820 14 1 1 1 1 1
7020 217 1 1 1 1 1
13312 (A; 1%, 1 1 1 1 2 1
8008 1° 1 1 1 1
5304 2? 1 1 1
6435 (1%, 1 1 1
15360 (A;2), 1 1 1
60060 21% 1 1 1 1
56320 (A; 1%)_ 1 i 1 1
6435 (1%_ 1 1
8925 31 1
162162  21° 1 1 1
141372 2%1° 1 1 1
141440  (A;21)- 1 1 1
161280  (A; 1%, 1 1 1
176800  31° 1
670208  (A;21%), 1 1
89760 P 1
716040  2°1* 1 1
326144 (A} 15 1
344064 321 1
595595 (2219, 1 1
524160  (A;2%), 1 1
465920 (A;1°). 1
129675  3° 1
183040  (A; 1%, 1
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In this way branching multiplicity and weight multiplicity tables may be built up
simultaneously with one being used to check the other. Both the branching multi-
plicities for G, » SU(3) and the weight multiplicities of G, have been given earlier (King
and Al-Qubanchi 1978) whilst the branching multiplicities for F;-SO(9), E¢—>
SU((2) ® SU(6), and E;»SU(8) have been extensively tabulated by Wybourne and
Bowick (1977). The weight multiplicity table of F; due to Veldkamp (1970) is extended
to give the results of table 6, whilst the weight multiplicities of E¢, E; and Eg are given in
tables 7, 8 and 9. It should be pointed out that the last table is not as extensive as the
remarkable table produced by Freudenthal (1954b) for Eg as an illustration of the
power of his recurrence relation (Freudenthal 1954a) for calculating weight multi-
plicities. However, table 9 serves to present the results in the notation described in I,
whilst table 10 considerably extends the list of branching multiplicities for Eg - SO(16)
given by Freudenthal (1956).
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