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The Weyl groups and weight multiplicities of the 
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Mathematics Department, University of Southampton, Southampton SO9 5NH, UK 

Received 19 February 1980 

Abstract. The Weyl group, WG, of each exceptional simple Lie group G,  is described in 
detail. Its structure is defined in terms of its coset decomposition with respect to the Weyl 
group, WH, of a classical semi-simple Lie group, H, embedded naturally in G .  The concepts 
of G-dominance and G-equivalence are defined and used to determine, from the character 
formula of Weyl, the branching rule associated with the restriction of group elements from 
G to H. The Weyl group WG is used further to impose constraints on both the branching 
multiplicities for G-, H and the weight multiplicities of G. These constraints are used to 
evaluate the weight multiplicities of F4, E6, E, and Es together with the branching 
multiplicities for Es -+ SO(16). 

1. Introduction 

As stressed by Wybourne and Bowick (1977) a number of recent applications of the 
exceptional Lie groups G2, Fa, Eb, E7 and E8 to physics have made it necessary to 
establish results on the irreducible representations of these groups analogous to those 
appropriate to the classical Lie groups SU(k + 1), SO(2k + l ) ,  Sp(2k) and SO(2k) .  
Amongst other requirements for these applications are the evaluation of weight and 
branching multiplicities. In this paper it is shown that these two types of multiplicity are 
intimately related and that the Weyl symmetry groups of the exceptional Lie groups 
have a special role to play in their evaluation. 

It is particularly important to make use of the relation between the Weyl symmetry 
groups of each exceptional Lie group and a naturally embedded classical Lie subgroup. 
Such natural embeddings have been discussed in detail in the preceding paper (King and 
Al-Qubanchi 1981), hereafter referred to as I. It has been shown in I that each natural 
embedding serves to define a natural labelling scheme for the irreducible represen- 
tations of the exceptional Lie groups. In this paper the labelling schemes based on the 
embeddings Gz  3 SU(3), F4 3 SO(9), E6 3 SU(2) 0 SU(6), E, 3 SU(8) and Es 2 SO(16) 
are used. The advantages of these particular choices are explained in the following 
section in which the Weyl group WG of each exceptional Lie group G is completely 
determined from the results of I and expressed in terms of its coset structure with 
respect to the Weyl group WH of the appropriate classical Lie subgroup H of G. 

In 9 3 the concepts of G-dominance and G-equivalence of vectors are defined in a 
notation appropriate to both the specification of weights of irreducible representations 
and the labelling of those irreducible representations. These concepts are used in 5 4 in 
conjunction with the character formula due to Weyl(l926) to determine algorithms for 
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0305-4470/81/010051+25$01.50 @ 1981 The Institute of Physics 51 



52 R C King and A H A  Al-Qubanchi 

the determination of the branching multiplicities associated with the restriction G + H. 
These algorithms depend for their implementation solely upon the properties of the 
classical Lie group H. Unfortunately they are rather inefficient. The situation is 
remedied in § 5 in which it is shown that the G-equivalence of weights of an exceptional 
Lie group G imposes strong constraints on both the weight multiplicities of G and 
simultaneously the branching multiplicities for G + H. These constraints are such that 
both such multiplicities may be calculated in terms of the known weight multiplicities of 
the classical Lie group H (King and Plunkett 1976). In this way tabulations of the 
weight multiplicities of F4, E6, E, and E8 are built up. The work of Wybourne and 
Bowick (1977) precludes the necessity of tabulating the branching multiplicities other 
than those for the restriction E8+ SO(16). These results complete the task initiated 
earlier for the group G2 (King and Al-Qubanchi 1978). 

2. The Weyl group 

The system of roots, Xg, of a complex semi-simple Lie algebra g, of rank k, is a set of 
vectors r in k-dimensional root space V. This space, as explained in I, may conveniently 
be embedded in a Euclidean space W of dimension d with d 2 k. The orthogonal 
complement, VI ,  of V in W is spanned by certain vectors p belonging to a comple- 
mentary set rg. These vectors satisfy the constraint r .  p = 0 for all root vectors r. The 
basis vectors of W are the mutually orthonormal vectors e, with i = 1 , 2 , .  . . , d.  They 
are defined so that the jth component of e ,  is given by ( e , ) ,  = 8L,. An ordering of vectors 
i i ~  W may be introduced such that U is higher than w, signified by U > w, if and only if the 
first non-vanishing component of U - w  with respect to the basis defined by e,, 
i = 1 , 2 ,  . . . , d, is positive. 

A root r is positive if r > 0, where all the components of 0 are zero. Furthermore, a 
root is said to be simple if it is positive and may not be written as the sum of two positive 
roots. Such simple roots were introduced by Dynkin (1962, p 432), who proved that 
each complex semi-simple Lie algebra g is characterised by its system, IIg, of simple 
roots. 

As pointed out in I, there is a consensus of opinion regarding the specification of the 
roots, E,, and the simple roots, ng, of each of the simple classical Lie algebras of rank 
k :  Ak, Bk, c k  and Dk associated with the classical groups SU(k + I), SO(2k + l ) ,  Sp(2k) 
and SO(2k) respectively. No such consensus has emerged in the case of the simple 
exceptional Lie algebras GZ, F4, E6, E7 and E8 associated with the exceptional groups 
denoted by the same symbols. This is primarily because the natural way of constructing 
the root system of an exceptional simple Lie algebra g, of rank k, depends upon an 
embedding in g of a classical semi-simple Lie subalgebra h of the same rank k. For each 
g there may exist more than one such h, leading therefore to the great variety of root 
systems for g appearing in the literature. This has been discussed in detail in I. For 
reasons which will become clear the labelling schemes adhered to in this paper are those 
based on the embeddings: GZ 3 A2, F4 3 B4, E6 3 AI i A5, E7 3 A, and E8 3 D8. The 
corresponding root systems, along with those of the classical simple algebras, are 
displayed in table 1. For each algebra the important quantity 

R = $ C  r 
r>O 

is also given, as well as the vectors p which define V I .  
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The Weyl group, WG, of a real compact semi-simple Lie group G is the symmetry 
group of the root diagram of the associated complex semi-simple Lie algebra g.  It is the 
group generated by reflections in the hyperplanes perpendicular to the roots. The 
action of such a reflection S,  on an arbitrary vector H' in the Euclidean space W, 
containing the root space, is defined by: 

S,:  w +S,w = w -2[(w. r ) / ( r .  r ) ] r .  (2.2) 

Clearly S-,w = S,w and more generally Sarw = S,w for any a f 0. These reflections 
preserve both V I  and V in the sense that for all p E V I ,  S,p  = p by virtue of the 
constraint p .  r = 0, whilst if U E V so that U .  p = 0 for all p E V' then S,U E V since 
(s,u) . p = o for all p E V I .  

In the case of the roots of the classical Lie algebras: 

Se, e, : w + w - (wl  - w,)(e, -e,) 

Se,+e, : w + w - (wI + w,)(e, +e,)  

Se, : w + w - 2w,e,, 

so that for U = ( u l ,  u2,  . . . , vd) E V :  

se,-e, : (. . . U ,  . . . U,. . .) + (* * . U, * . * U ,  . . .) 

se, : (* * . U L  * . .) + (* * . -U, . . .) 

(2.3) 

(2.4) 

(2.5) 

: (. * * U, * . . U , .  * * )+  (. * . . -U,. * * - U , .  . *)  

where the components of the vector U indicated by dots are unchanged by the reflection. 
It is then easy to identify, for each of the classical simple Lie groups, the cor- 

responding Weyl groups formed by closure under successive application of the relevant 
transformations selected from (2.3), (2.4) and (2.5). In the case of SU(k + 1) only (2.3) 
is relevant and Wsu(k+l) is the group, of order (k + l)!, of all permutations of the 
components of U .  For SO(2k + 1) and Sp(2k) (2.3), (2.4) and (2.5) are all relevant. The 
Weyl groups WS0(2k+l) and WSp(2kj are identical, each being the group, of order 2kk!,  of 
all permutations and independent sign changes of the components of U .  On the other 
hand for S0(2k) ,  (2.5) is not relevant and WsO(2kj is the group, of order 2k-1k!,  
consisting of all permutations and an even number of independent sign changes of the 
components of U .  

For each exceptional simple Lie group G one advantage of using a natural labelling 
scheme for the roots of the corresponding exceptional simple Lie algebra g ,  as described 
in I, now becomes apparent. Such a scheme makes it clear that the root system, Xg, of g 
contains the root system, Xh, of a classical semi-simple Lie algebra h, where h 
corresponds to a classical subgroup H of G. It follows that WG contains WH as a 
subgroup, and it is convenient to construct WG by making use of its coset decomposition 
with respect to WH, namely: 

where c = IWGI//WHI and S,  for y = 1 , 2 , .  . . , c are a set of coset representatives such 
that each element S of WG can be written in the form TS, for some element T i n  WH and 
some coset representative S,. It is at this stage that the criterion used in selecting from 
the set of all natural labelling schemes the particular ones of table 1 becomes apparent. 
This criterion is that of the minimisation of the index c. The embeddings GZ 3 SU(3), 
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F4 =I S0(9) ,  E6 13 SU(2) 0 SU(6), E7 =I SU(8) and E8 3 SO(16) correspond to the 
minimal possible values of c in (2.6), namely c = 2, 3, 36, 72 and 135 respectively. 

To determine suitable coset representatives S,  it is necessary to consider the Weyl 
reflections associated with those roots of g which are not roots of h. In the case of G2, 
for example, the roots additional to those of A 2  define reflections of the form: 

S(2e,-e,-ek)/3 : w + w - (2w1 - w] - wk)d2ei -e, -ek). 1 

The space V I  is spanned by p = e, + e 2 +  e3, so that for U = ( u l ,  U:, u3)  in V, U. p = 
u 1 +  v 2  + 03 = 0. The use of this constraint gives: 

S(2e,-e,-ek)/3 : (v i ,  U p  u k )  ( -vi ,  -vk, -U/). (2.7) 

Making use of the known structure of the subgroup WsU(3) it follows that WG2 is the 
group of order 12, consisting of all permutations and simultaneous sign changes of all 
three components of U. Thus the index of WsU(3) in W G ~  is 2, as claimed, and 

WGZ = W S U ( 3 ) s l  w S U ( 3 ) s Z  

where the coset representatives SI and S 2  may be chosen to be the identity element: 

s1 : (U19 U:, U3)’(Ul, U29 U3) 

and the reflection: 

$2 = S(e,-2ez+e3)/3 : ( ~ 1 ,  U:, ~ 3 ) ’  (-03, -u2 ,  -01). (2.8) 

Similarly, in the case of F4, E6, E7 and E8 the roots additional to those of the classical 
subalgebras B4, Al +A5,  A7 and D8, respectively, define reflections of the form: 

with U/ = T1 for j = 1,2 ,  . . . , d. Thus for any vector U in V 

1 
SL,v,,e,/2 : (. . . U, . . .) ’ (. . . . ? ( U ,  - u1 1 U j V j )  . . . 

/ # i  
(2.9) 

where now the components of the vector U indicated by dots transform in the same way 
as the particular component ui for which the transformation has been given explicitly. 
The reflection (2.9) may be simplified where appropriate by use of the constraints 
U. p = 0. In order to construct explicitly the corresponding Weyl groups it is necessary 
to establish the result of repeated application of (2.9) together with (2.3), (2.4) and (2.5) 
as appropriate until closure is obtained. This has been carried out explicitly elsewhere 
(Al-Qubanchi 1978) and confirms that the Weyl groups of F4, E6, E7 and E8 are groups 
of order 3(244!), 36(2!6!), 72(8!) and 135(278!). Convenient sets of coset represen- 
tatives appropriate to subgroups consisting of the Weyl groups of S0(9) ,  
SU(2) 0 SU(6), SU(7) and SO(16) are given in table 2, in which the Weyl group WG of 
each simple Lie group G is displayed. 

This table provides not only an explicit statement of the action of each Weyl group 
element S on an arbitrary vector U in the root space V, but also the parity, rls, of this 
element. The parity qs is + 1 or - 1 according to whether S is generated by an even or an 
odd number of reflections of the type (2.2). 



56 

ri 
Q 

4 r- 

R C King and A H A  Al-Qubanchi 

t, 
v 

b 
!- 

I 
v 

Y 
N 

* + 
Y 
c! 
0 
v) 

-. 
Y 

N 
Y 

h 

Y 

a 
v) 

c! 

h h  

U 

.- .- U .- 

k 
L. I 
L k  
b l  
h h  .- .- U .- 

U 

U) w -  
b 

-. 
m 
N 

-. * 
N 

m 

* 



The exceptional Lie groups 57 

h 

'%. 
kL  

k L c 
L I L  

0 
/I 
I 
3 

+. 
; 
t 

-. 
m 

N 
t- 



R C King and A H A  Al-Qubanchi 
a, 

I 
c 

I C  

%.L 
T;"^ c- I 

v 

V h  

1 1 -  
h 

v 
h .- 

h .3 .- .- .- .- 
v u -  



The exceptional Lie groups 59 

3. G-dominance 

Given a vector U in the root space V of some semi-simple Lie algebra g associated with 
a Lie group G there exists a set of vectors { S u :  S E WG} each of which may be said to be 
G-equivalent to U, and a unique G-dominant vector uG which is defined to be the highest 
vector of this set. Using the information in table 2 it is a straightforward task to 
construct, from a given vector U, the corresponding class of G-equivalent vectors and to 
identify the G-dominant vector uG. 

For example the vector u = ( O ,  1, -3,2) in the root space V of A3 is SU(4)- 
equivalent to others such as (1, 0, -3,2), (--3,2,1,0), formed by permuting the 
components of U. The corresponding SU(4)-dominant vector, usu(4), is clearly 
(2, 1, 0, -3). Similarly the vector U = (-4, 2 ,2 ,1 ,  3 ,4 ,  -2, -2) in the root space of E8 is 
E8-equivalent to others such as (4, 2 ,2 ,  1 , 3 , 4 ,  2, -2), (4 ,4 ,  3 ,2 ,2 ,2 ,  2, -1). . . 
formed by permuting the components of U and by changing the signs of these 
components in pairs in  accordance with (2.3) and (2.4). Still other vectors such as 
(-5, 3, 3 , 0 , 2 , 3 ,  -3, -3)9 (T,  z,z, z,~, ?,i, i), . . . may be shown to be E,-equivalent to U 
through the additional application of (2.9). However, the identification of uEs is by no 
means trivial. 

In order to facilitate this and similar identifications it should be pointed out that the 
specific selection of coset representatives S ,  made in table 2 for each exceptional Lie 
group G has been made in such a way that if U is G-dominant then S,u is H-dominant 
where H is the appropriate classical Lie subgroup of G.  Conversely given that U is 
H-dominant it is possible to use table 2 to identify a particular coset representative S ,  
such that there exists T in the Weyl group Wrr of H with the property that TS,u is 
G-dominant. The action of the required S ,  on each possible H-dominant vector U for 
each of the exceptional simple Lie groups G is given in table 3. This may be used, as in 
the following example, to identify G-dominant vectors. The SO( 16)-dominant vector 
equivalent to (-4,2,2,  1, 3.4,  -2, -2) is uSO(16) = (4,4,  3, 2 ,2 ,2 ,2 ,  -1) for which 

that the required vector, S,usO, 16) (from which the corresponding E8-dominant 
vector uEx may be found through the application of some element Tof WsO(16j), is 
the vector whose components correspond to case (ii) of the entries appropriate 
to E8 in table 3, that is (7, 1 ,0 ,  -1, -1, -1, -1,2).  Applying permutations and 
sign changes of pairs of components then gives the required E,-dominant vector 
u t H = ( 7 ,  2, 1, 1, 1, 1, 1, 0). 

The necessary and sufficient conditions for a vector v to be G-dominant are implicit 
in table 3. Conditions appropriate to the classical groups have been included for 
completeness by identifying H with G.  The conditions appropriate to each exceptional 
group G are those specified by case (i) of the entries tabulated, together with the 
conditions for H-dominance, which are also given. 

As explained in I it is useful in developing labels for the irreducible representations 
of a Lie group G, associated with a semi-simple Lie algebra of rank k, to project each 
labelling, G-dominant highest weight vector in the k-dimensional root space V of W 
onto a vector in another k -dimensional subspace A of W. This space A is spanned by all 
the vectors e ,  with i = 1,2 ,  . . . , d except those with i = m, where in the notation of I, the 
values of m are defined so that each vector p of V' takes the form p =  
e, + e,+l  + , . , +e,+ , -  + e,,,. The ordering of the basis vectors e, of W is then such that the 
projection is onto vectors whose last (d  - k)-components, with respect to this ordering, 
are zero. Such a projection, P, may be applied to any vector U of V to give a vector A of 

13 5 3 3 3 3 1 1  

U 3  f V4+ V6+ 0 7 -  0, = 16 > V I  = 4 2 V 2 - t  U 3  + U 4-u5-V6-u7-D8=2. It follows 
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A in accordance with the prescription: 

The inverse relationship is: 

(3.1) 

the consequences of these relations are spelled out in table 4. 
It should be stressed that the ordering relations on vectors in W, involving the first 

non-vanishing difference of components, is applicable directly to vectors v in V but 
only indirectly to vectors A in A.  'Thus for any two vectors A and p in A, A > p if and 
only if P - l A  > P-'p. For example in the case of the group SU(3) for which the space V 
is spanned by p = el + e l  + e 3  = (1 1 1) the vectors A = (1 0 0) and p = (1 1 0) in A are 
suchthat (1 0 0 ) > ( 1  1 O ) s i n c e P - 1 A = ( $ - $ - f ) a n d P - 1 p = ( 3 ~ - 3 ) , w h i l ~ t  (?-s-T)> 
(f 5 - 5 )  by virtue of the lexicographic ordering in V. 

In the same way A and p are defined to be G-equivalent if and only if P-'A and 
P- 'p  are G-equivalent. Moreover A is G-dominant if and only if P- ' A  is G-dominant. 
This implies that the G-dominance of vectors A in A should be tested through the use of 
(3.2). Rather than do this from first principles whenever required the necessary and 
sufficient conditions for a vector A in h to be G-dominant have been included In table 4. 
Finally in this table the further conditions on the components of such a 6-dominant 
vector AG in A for it to label an irreducible representation of G have been displayed. 
They may be obtained from I. As implied in this previous paper, the highest weight, 
MG, of the irreducible representation of G labelled by AG, is the G-dominant vector in 
V defined by 

1 1  2 2 1 1  

MG = P - ' A ~ .  (3.3) 

4. Branshing rules 

The character of the irreducible representation A<; of the semi-simple Lie group G 
having highest weight MG is given, in the class specified by parameters 4 = 
(q51, ( b 2 , .  , . q5d) ,  by the formula due to Weyl (1926): 

where the summations are carried out over all elements S of the Weyl group WG and RG 
is half the sum of the positive roots of the corresponding Lie algebra g.  The G-dominant 
vectors RG and MG lie in the space V which is embedded in W. The vector 4 lies in the 
same space V, orthogonal where appropriate to V I .  

The branching rules arising from the restriction of group elements of one of the 
exceptional Lie groups G to its naturally embedded classical Lie subgroup H may be 
established in many ways. One way involves recognising that the Weyl group WH is, for 
such an embedding, a subgroup of WG and that the class parameters of M coincide with 
those of G. Thus making use OF the coset representatives S, defined in 5 2 it follows 
that: 
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Dividing the numerator and denominator by 

allows this character (4.2) to be written as a quotient of sums of characters of H.  To be 
precise: 

T ( Y )  

x""(4) = y = l  i Tsy*%/ y = l  i TS,X H(4)> (4.3) 

where U$" and &) label the irreducible representations of H having highest weights 
S,(RG + MG) - R H  and SyRG - RH respectively, i.e. 

(4.4) us' = P(s,(RG + M G )  - R H )  

It should be stressed that the particular choice made of coset representatives, S,, 
whose action is defined in table 3 is now highly advantageous since this action on the 
G-dominant vectors RG + MG and MG is guaranteed to give H-dominant vectors. 
Moreover the vectors S,(RG+MG)-RH and S,RG-RH are also H-dominant as 
required for ~ f i )  and ~ f i ) ,  defined by (4.4) and (4.5), to be irreducible representation 
labels as they stand, without modification. 

Thus making use of RG and RH as given in table 1, the action of S,  as defined in table 
2, and the projection P defined in table 4 it is possible to write out the expansion (4.3) 
explicitly for each exceptional Lie group G. 

This has already been done (King and AI-Qubanchi 1978) for Gz, and yields in the 
present notation: 

(4))/(xY4) - x w 4 )  (4.6) 

where the brackets ( ) and { } serve to distinguish between the characters of G2 and its 
subgroup SU(3). 

X ( A l A Z ) ( 4 )  = ( * { A ' + W  (4 )  - X { A l + l , A l - A 2 + 1 )  

Similarly in the case of F4 the same formula (4.3) gives 

(4 )  = { x [ A ~ A z A 3 A 4 ]  (4 1 ( A A A A )  x ' 2 3 4  

(4 1 
(4 ) )  

[ ; ( A l + A z  t A 3 + A 4 ) + ~ , ~ ( A , + A , - A , - A 4 ) + ~ , f ( A ~ - A z + A , - A 4 ) + ~ , ~ ( A ~ - A z - A 3 + A ~ ) + ~ ]  

[ ~ ~ A , + A , + A 3 - A , ~ + l . ~ ( h , + h , - h 3 + A 4 ) + l , ~ ~ A ~ - A 2 + A 3 + A 4 ~ + l , ~ ~ A l - A 2 - A , - A 4 ) ]  

-X 

+ X  

x 1/{x[21(4) - *[43 ifI(4) + * [ 1 3 1 ( ~ ) }  (4.7) 

where now the brackets ( ) and [ ]serve to distinguish between the characters of F4 and 
its subgroup SO(9). 

Formulae similar to (4.6) and (4.7) may be written down for Eg, E7 and E8 but they 
contain in the numerator and denominator c terms where c = 36, 72 and 135 respec- 
tively. Nonetheless they do serve to define exceptional group characters in terms of 
classical group characters, and in principle they may be used to determine the 
corresponding branching multiplicities B Z ,  appropriate to the restriction from G to H, 
which are defined by the expansion: 

(4.8) 
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By means of a stroke of good fortune in the case of Gz, which does not appear to 
apply to the remaining exceptional Lie groups, the quotient (4.6) may be evaluated 
explicitly (King and AI-Qubanchi 1978) in the form (4.8) to yield the branching 
multiplicities for the restriction from GZ to SU(3). 

In general these multiplicities may be found by systematically building up the 
numerator of (4.3), working from the highest representation ug) downwards, by 
multiplying the denominator of (4.3) by characters ~ " " ( 4 )  chosen so as to give the 
required terms, after appropriate cancellations have been made involving the factors 
vs,. This procedure involves only a knowledge of the Kronecker product multiplicities 
of the classical group H defined by: 

Some results for the branching multiplicities for the restriction from F4 to SO(9) have 
been obtained in this way from (4.7) and given elsewhere (Al-Qubanchi 1978). 
However the method is very tedious, comparing most unfavourably with that used by 
Wybourne and Bowick (1977) based on the method of elementary multiplets due to 
Sharp and Lam (1969). An alternative approach to this branching rule problem arises, 
as shown in the next section, as a by-product of a method of calculating weight 
multiplicities. 

5. Weight multiplicities 

There is another expansion of the character (4.1) of an irreducible representation AG 
which serves to define the weights m of this representation. This expansion takes the 
form: 

where the coefficient MkG is the multiplicity of the weight in in the representation AG. 
This expansion may be effected in many ways. For the classical Lie groups an 

extensive tabulation of weight multiplicities already exists (King and Plunkett 1976). 
For the exceptional Lie groups G it is convenient to make use of the branching rule, 
(4.8), associated with the restriction from G to a classical Lie subgroup H, together with 
the character formula (5.1) appropriate to H: 

Comparison with (5.1) then yields: 

M",G = B%MEH. 
W H  

(5.3) 

If the branching multiplicities are known as well as the weight multiplicities of the 
classical group H this provides a very simple way of determining the weights and the 
weight multiplicities of the exceptional group G. It should be noted that (5.3) implies 
that every weight of a representation of G is necessarily the weight of some represen- 
tation of H. This is a consequence of the selection of H as a subgroup embedded 
naturally in G which allows the class parameters for G and H in (5.1) and ( 5 . 2 )  to be 



66 R C King and A H A  Al-Qubanchi 

identified. It is now possible to exploit the fact that the Weyl group WH is a subgroup 

The dependence of the character formula (4.1) on the elements S of the Weyl group 
of WG. 

WG is such that, on expanding in the form (5.1), it is clear that 

M &  = M >  (5.4) 

for all S in WG. In the case for which S is a coset representative, S,, of WG with respect 
to WH this yields, through (5 .3) ,  the non-trivial constraints: 

( 5 . 5 )  

for y = 1 , 2 ,  . . . , c, where MgTm has a priori no connection with MEH. 

multiplicity of the corresponding G-dominant weight mG. Then (5.5) gives: 
Given m y  particular weight m it is only necessary by virtue of (5.4) to evaluate the 

for all coset representatives S,, which, as pointed out in 0 3, have been chosen so as to 
ensure that S,mG is H-dominant. This relationship between dominant weight multi- 
plicities of G and those of H, involving the branching multiplicities, serves as a powerful 
weapon in tackling the problems of evaluating both weight multiplicities of G and the 
branching multiplicities. 

Since the weights mG and S,mG appearing in (5.6) are G and H-dominant respec- 
tively they are necessarily highest weights of some irreducible representations of C and 
H :  in fact those labelled by V G  = PmG and CT& = PS,mG, where in the labelling scheme 
adopted here, the projection operator P is the same for both the groups G and H. It is 
convenient, without it is hoped any great risk of confusion, to define: 

MtZ =Mh,, and M;YH =M;TmG (5.7) 

so that 

Thus in order to maximise the benefit obtained from (5.8) it is useful to tabulate for each 
representation label vG the complete list of representation labels U& defined by (5.9). 
Unfortunately P and S ,  do not in general commute so it is necessary to make use of both 
table 2, defining the action of S,, and table 4 defining that of P, in constructing such a list. 
Some results are displayed in table 5. 

Only €or G2 is it trivial to derive the general result. In this case: 

PslP- ' (vlv2)  = PP- l (v lvz )  = (v1vz) (5.10) 

and 
2 1  1 2  I I  ps2p-'(vlv2) =PS~e l -2e2+e~) /3 (5v1-3v* ,  - - 3 v l + ? ~ 2 ,  - 3 ~ 1 - 3 ~ 2 )  

(5.11) 
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where use has been made of (3.1) and (3.2) with p = (1, 1, l), and of (2.8). This merely 
corresponds to the fact that the highest weights of the mutually contragredient 
representations {vl, v2} and {v,, v 1  - v2} of SU(3) are G2-equivalent. It is obviously true 

Table 5. 

G-dominant 
vector v G  
in .Z 

Set of H-dominant vectors PSP-' vG 
for S E  WG which are G-equivalent to vG 

G = F4 H = SO(9) 

0 
1 

A;  1 
2 
21 

l 2  

212 
22 
A;  2 
A; 21 
3 
31 
312 
313 
32 
321 
32 

0 
1 

A ;  1 
2 
21 

l2  

212 
22 
A ;  2 
A;  21 
3 
31 
312 
313 
32 
321 
32 

A 

l3  
l4  
A: l2  

2 i 3  A ;  1' 
221 
A; l4 
2'12 

23 
A;  21' 

A; 2' 

G E6 H = SU(2) @ SU(6) 

0 : 0  
1 : l  
l : l S  
2 : o  
2 :  l2  
2 : i 4  
2 : 2  
2 :  2 i 4  
2 : 2 5  
3 : l  
3 :13  
3 : 1 5  
3 : 2 1  
3 :213  
3 : 2213 
3 : 241 
3 : 3  
3 : 314 
3 : 324 
3 : 3 5  

0 : o  
1 : l  

2 : o  
1 :1' 

2 :12  
2 : i 4  

2 : 21" 
2 : 2 5  

2 : 2  

3 : l  
3 : l '  
3 : l S  
3 : 2 1  
3 : 213 
3 : 2'13 

3 : 3  
3 :314  
3 : 32" 
3 : 3 5  

3 : 241 

o :14  
0 :  l2 
1 : i 3  
1 : 2 i 3  
1 :221' 
0 : 2 ~  
I : 2 1  
0:2'  
2 : 212 
2 :2212 
2 : 2"' 

2 :22  

2 :313  
2 :3213 

2 : 32' 
0 :34  
2 :31  
2 : 342 
0 :32  

0 :  2 i 4  

0 :212  

1 :241 

0 : 2  

1 : 314 
1 : 32212 

1 : 3  

2 :3231 
1 :313  

1 : 221 

2 24 

1 : 3"l 
1 :32  

0 :  2312 
0:25 

0 : 2212 

1 :2?1  0:3231 
0 :313  0 :2 '  0 : 3223 
1 :324  0 :3213 
1 :323  0:3'21 
1 :312  1:3'2'1 0:3221 0 :342  
1:3212 1:3322 0 :31  0:32212 
1 : 3 5  0:321 

0 : 3222 
0 : 3'12 
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Table 5-continued 

G-dominant 
vector vG 
in A 

Set of H-dominant vectors PSP-’vG 
for S E  WG which are G-equivalent to vG 

G = E 7  H = SU(8) 

0 

2 
1’ 

21* 
21‘ 
22 
31 
313 
31’ 
321 
321’ 

426 
32 

0 
l 2  1‘ 
2 2’ 
21’ 2214 2’12 
216 14 
22 2b  
31 321’ 3’214 3241 2’2’1 362 
31’ 32’13 2’ 32231 2’ 3423 
315 32313 2’1’ 3’2’ 
321 3’14 3224 3’2 1 
321’ 32’1 2 i 4  2’1’ 2412 
32 36 
42‘ 24 

G = E s  H = SO(16) 

0 0 
l 2  l 2  (A)+ 
2 2 (A;  1)- l4 
21’ 21’ (A; 12)+ 1‘ 
2’ 22 (18L 
(A; 21, (A;2)+  214 (A; 13)- (i8)- 
31 31 21‘ 2212 (A;  21)- ( A ;  14)1 
313 31’ (A;21’)+ 23 2'14 (A;  1’)- 
321 321 (A; 2’1, (2’16)+ (A;  1% 
32 3’ (A; I*)+ 

in this case that the weight mukiplicities of G2 derived earlier (King and Al-Qubanchi 
1978) using (5.8) with c = 1 are entirely consistent with (5.8) in the case c = 2 since the 
branching rule from G2 to SU(3) involves mutually contragredient pairs of represen- 
tations along with self-contragredient representations of SU(3). 

However, in other cases the constraints (5.8) with c # 1 are much more important. 
To see this it is instructive to consider the problem in the case when G=ES and 
H = SO(16). The defining representation of E6 is the adjoint representation (12).  The 
weights of this representation are precisely the roots themselves, each with multiplicity 
1, together with the null vector whose multiplicity is the rank, 8, of E6. All the roots of 
E6 are necessarily E6-equivalent, but as indicated in table 5 they include two SO(16)- 
dominant weights (1’) and (A), which are not SO(16)-equivalent. This implies, after a 
dimensionality check to ensure that all weights have been included, that on restriction 
from E6 to SO(16): 

The relevant portion of the weight multiplicity table (King and Plunkett 1976) of 
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SO(16) takes the form: 

8 1 1  

This confirms the weight multiplicities of Ex: 
Mi;:; = M ( 1 Z )  = Miaf’ = 8  (A)+  

Similarly in the case of the representation (2) of Es the S0(16)-dominant weights 
(2), (A; 1)- and (14) are Es-equivalent as indicated in table 5. A dimension check then 
verifies the validity of the branching rule: 

Eg+S0(16)  (2)+[2]+[A; 1]-+[14]. 

Correspondingly the weight multiplicity table of SO( 16) furnishes the results: 

P I  7 1 1 
[A; 11- 7 1 
[i41 28 6 1 

35 1 7 1 7 1 

so that 

Mi;; = 35 
M‘21 - M‘2’ 

Mi:; =M(A,l)-  (2) =Mi:$ = 1 

(1 1 - (A;O)+ = 7  

where the equalities in weight multiplicities of Es are consistent with the requirements 
of Es-equivalence. 

Continuing, the representation (212) of Es has as its highest weight (212) which is 
Es-equivalent to the 50(16)-dominant weights (A; 12) and (16), so that on restriction: 

Es + SO(16) (212)+[212]+[A; l2],+[l6]+. . . . 
The corresponding SO( 16) weight multiplicities are: 

[212] 76 7 19 1 3 
[A; 121+ 28 6 1 
[I6] 56 15 4 1 

132 7 34 1 7 1 28 6 1 
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Table 7. E6 dominant weight multiplicities M t .  

C V  1 72 270 720 432 432 27 27 

V 
4 A o : o  2 : o  2 : 2 i 4  3 : i 3  3 : 2 1  3 :241  3 : 3  3 : 3 5  

1 0 : 0  
78 2 : 0  6 1 

1 

650 2 : 2 i 4  20 5 1 
2925 3 : 1 3  45 15 4 1 

5824 3 :241  64 24 8 2 0 1 

3003 3 : 3 5  24 10 4 1 0 1 0 1 

5824 3 : 2 1  64 24 8 2 1 

3003 3 : 3  24 10 4 1 1 0 1 

C” 27 216 27 432 1080 270 

2 : 1 4  2 :25  3 : i  3:2’t3 3 :314  
_. 

dA 1 : l  

27 1 : l  1 
35 1 2 : i 4  5 1 
35 1 2 : 2 5  4 1 1 

737‘1 3:2’1’ 44 15 5 4 1 
7722 3 :314  40 14 4 5 1 1 

1728 3 : 1  16 4 0 1 

C” 27 216 27 432 1080 270 

dA 1 : i 5  2 : 1 2  2 : 2  3 : 1 5  3 :213  3 :324  

27 1 : i 5  1 
351 2 :  l2 5 1 

1728 3 : l S  16 4 0 1 
7371 3 :213  44 15 5 4 1 
7722 3 :324  40 14 4 5 1 1 

351 2 : 2  4 1 1 

as required. However, from (5.4) 

In order for this relation to be satisfied it is necessary for the representation [A; 11- of 
SO(16) to appear in the restriction. This gives the additional weights and running 
totals: 

13% 7 34 1 7 1 35 7 1 
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so that 
(212) = M(212) __ MI213 =7.  M(21 ( A ;  11.. ( i 4 j  

Mi?;;) = M @ ;  Oj, 

Now, however, it is required that 
(212) 

which may be satisfied through the inclusion of [12] to yield: 

[I2] 8 1 

140 7 35 1 7 1 35 7 1 

so that 
=M(212) - 

(A;O)+ -7. 

A dimensional check then confirms that the branching rule 

E8+S0(16) (212)+ [212]+[A; 12]++[A; 1]-+[16]+[12] 

is now complete. Hence 
M(21*) = 

(0) 140 

completes the evaluation of weight multiplicities of the representation (212) of E8. 

Table 8. E7 dominant weight multiplicities Mi). 

C” 1 126 756 56 2016 126 4032 

dA h 216 212 22 31’ 426 31 

1 0 1 
133 216 7 1 
1539 212 27 6 1 
1463 2’ 21 5 1 1 
8645 315 17  22 5 0 1 
7371 426 63 17 4 0 1 1 
40755 31 225 69 23 6 5 0 1 

C” 56 576 1512 4032 1512 56 

d.i h \. 1’ 2 321’ 313 321 32 

56 1’ 1 

6480 3215 21 6 1 
21664 313 71 21 5 1 

24320 3’ 45 15 5 1 1 1 

912 2 6 1 

51072 321 111 21 10 4 1 
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Table 10. Branching multiplicities I?; for E8+S0(16).  

1 2 3 3 2 1 7 2 4 1 
4 8 0 7 4 7 4 0 7 

E8 8 7 3 0 7 9 5 9 6 
5 8 0 2 2 0 6 3 

0 0 5 4 2 0 1 
4 4  0 7 4 0 2 

0 0 5 

ko l 2  2 21i 22 (A;2)+ 31 313 321 32 
SO(16) 
dil 

1 

120 
128 

135 
1920 
1820 

7020 
13312 
8008 

5304 
6435 

15360 
60060 
56320 
6435 

8925 
162162 
141372 
141440 
161280 

176800 
670208 
89760 
716040 
326144 

344064 
595595 
524160 
465920 

129675 
183040 

1 1 

1 1 
1 1 

1 1 
1 I 1 
1 1 

1 1 
I 1 
1 

1 
1 

1 
1 

1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 
I 
1 

1 
1 
1 

1 
1 

1 

1 
1 
1 
1 

1 

1 

1 
1 
1 
1 
1 

1 
1 

1 
1 

1 
2 
1 

1 
1 

1 
1 

1 
1 
1 
1 

1 

1 

1 
1 
1 
1 

1 
1 

1 
1 

1 

1 

1 

1 
1 

1 
1 
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In this way branching multiplicity and weight multiplicity tables may be built up 
simultaneously with one being used to check the other. Both the branching multi- 
plicities for G 2 +  SU(3) and the weight multiplicities of GZ have been given earlier (King 
and Al-Qubanchi 1978) whilst the branching multiplicities for F4+ S0(9) ,  E6+ 
SU(2) 0 SU(6), and E7 + SU(8) have been extensively tabulated by Wybourne and 
Bowick (1977). The weight multiplicity table of F4 due to Veldkamp (1970) is extended 
to give the results of table 6, whilst the weight multiplicities of E6, E, and Es are given in 
tables 7 ,  8 and 9. It should be pointed out that the last table is not as extensive as the 
remarkable table produced by Freudenthal (1954b) for E8 as an illustration of the 
power of his recurrence relation (Freudenthal 1954a) for calculating weight multi- 
plicities. However, table 9 serves to present the results in the notation described in I, 
whilst table 10 considerably extends the list of branching multiplicities for Es+ SO(16) 
given by Freudenthal (1956). 
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